
International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1952

ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

Developing an Intelligent Interactive Approach for
Multi-objective Optimization Problems

Alia Youssef Gebreel

Abstract— This paper presents three intelligent algorithms, and combines all of them for solving some interactive multi-objective

optimization problems. The hybrid optimization model combines Genetic Algorithm and Bacterial Foraging Optimization (BFO) with

Harmony Search (HS) algorithm. This model is being designed and implemented in the hope to improve performance of GA and help BFO

to escape from the local minima or maxima. Where, genetic algorithm is search based on the concepts of natural selection and genetics.

BFO simulated the life cycles and the foraging behaviors of bacterial, which are called Escherichia coli. HS originally was inspired by the

analogy between music improvisation and the optimization process. Also, a comparative study is presented to clarify the development

approach based on the resulted solution's distance from the utopia point.

Index Terms— Genetic algorithm, Bacterial foraging optimization algorithm, Harmony search algorithm.

——————————  ——————————

1 INTRODUCTION

HE classical interactive multi-criterion optimization meth-
ods demand the decision-makers to suggest a reference
direction or reference points or other clues [5] which result

in a preferred set of solutions on the Pareto-optimal front. It is
often necessary for finding a single solution (or solutions) to
optimization problem with conflicting criteria.

In the 20th century, artificial intelligence (AI) was one of the

cutting-edge research fields. Over the second half period of

this century, many methodologies have been investigated to

explore the similarity between natural evolution and problem-

solving algorithms, such as genetic algorithm, evolution strat-

egies, evolutionary programming, genetic programming, par-

ticle swarm, and probabilistic model building genetic algo-

rithm or estimation of distribution algorithm are based on the

principle of evolution (survival-of-the-fittest) and imitate some

natural phenomena (genetic inheritance) [3, 6, 12].

Artificial intelligence tools may be classified into the following
models:

 Genetic Algorithms.
 Expert System.
 Decision Support System.
 Fuzzy Logic Expert system.
 Artificial Neural Networks.
 Neuro-Fuzzy Systems.
 Simulated Annealing.
 Ant-Colony Optimization.
 Swarm Optimization.
 DNA Computing.
 Artificial Immune System.
 Bacteria Foraging Optimization.
 Harmony Search Algorithm.

The corner stones of the optimization Model are as follows:

1- Problem definition.
2- Defining the decision variables.
3- Data collection and classification.
4- Model developing.
5- Developing the solution procedure.
6- Model testing (Benchmark functions).
7- Model implementation.
8- Feedback to improve the model performance.
The relationship between artificial intelligence and optimition
is represented in the following figure [11].
To further enhance the optimization performances, an adap-
tive hybrid artificial intelligent algorithm will be studied in
this research.

 Alia [1] presented an overview of GA, BFA, and HA. The
purpose of this paper is to introduce a novel approach, which
integrates the genetic algorithm, and bacterial foraging algo-
rithm with the harmony algorithm to find a preferred solution.

T

————————————————

 Alia Youssef Gebreel Mohamed is currently having Ph. D. degree in Opera-
tions Research, from Institute of Statistical Studies and Research (ISSR) at
Cairo University, Cairo, Egypt, 2018.

AI Tools

Problem

Description

Model

Developing

 Solution
Evaluation

 Solution

Procedure

 Fig. (1): Relationship between AI and optimization.

Qualitative and
Quantitative
parameters

Mathematical
Analysis IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1953
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

It is accomplished by testing these algorithms on some differ-
ent examples. The integrated approach outperforms than ap-
plying every one of these three algorithms. Moreover, it has
better performance for finding a best solution compared to the
others reported in literature of the multi-objective optimiza-
tion problems. Where, it provides simple ways to generate
efficient solutions for the decision maker in the multi- objec-
tive problems. Thus, the decision maker can select his or her
favorable efficient solution. Here, the decision maker interacts
with computer program.
The major procedures of any one of these models can be ex-
pressed as follows:

1. Generate an initial population (t) based on the decision
maker.

2. Calculate the fitness of population (t).
3. Repeat

i. Select a new solution(s) (population(t+1)) from popula-
tion(t) with preferring the fitter ones

ii. Recombine solution(s) of population (t) to create a
new population (t+1)

iii. Perform Mutation of population (t+1)
iv. Determine the fitness of population (t+1)

4. Stop until the best solution is good enough for the deci-
sion maker.

The rest of the paper is organized as follows. Section 2 pre-
sents the proposed interactive algorithm in detail. To show the
effectiveness of this algorithm, four different numerical exam-
ples are illustrated in Section 3, followed by experimental re-
sults and analyses are shown in Section 4. Conclusion is also
provided towards the end in Section 5.

2 THE PROPOSED ALGORITHM

The classical genetic and bacterial foraging optimization algo-
rithms may take a time to reach a favorable efficient solution
exactly for the decision maker. Where, the GA has no guaran-
tee to find the favorable solution. But, it is possible to get an
approximately favorable solution because GA is stochastic
algorithm. Also, BFO algorithm may get struck in local opti-
ma. To resolve this problem, the harmony algorithm is inte-
grated to them. This modified version is more efficient and
accuracy for optimization process than applying every one of
these three algorithms. Also to achieve this purpose, a pro-
gramming in MATLAB code [8] has been developed in order
to obtain good convergence and more accurate results of ap-
plications with save time. This algorithm is design to generate
preferred solution. The decision maker determines a favorable
efficient solution based on the distance of objective functions
from the utopia point.

2.1 The Steps of the Proposed Interactive Algorithm

The basic steps of the proposed interactive algorithm can be
summarized as follows:

1- Starting with an initial solution based on preference of
the decision maker; this initial solution can be selected
from any one of the individual optimal solutions in GA
or all them for BFO and HS. Selecting the values of algo-

rithm parameters. These values are taken after carrying
out several trials on the example.

2- Using penalty functions to handle constrained problems
in order to force the search towards feasibility in the ge-
netic and harmony models.

3- Constructing an interactive computer programming GA.
4- Running program to obtain a new solution.
5- Evaluating the obtained solution. If the new solution is

acceptable, stop.
6- Otherwise, constructing an interactive computer pro-

gramming BFO with the output of GA as initial solution.
7- Update this initial solution with a suitable way for BFO

to give a new solution.
8- If the new solution is acceptable, stop. Otherwise, com-

bining HA procedure with BA to extract the preferred so-
lution directly based on the final solution of BA (after a
suitable updating for HA).

9- When initialize the optimization problem and algorithm
parameters to minimize the objective functions, the speci-
fication of each decision variable is design as possible
value range for each decision variable. The values of al-
gorithm parameters are selected on the basis of empirical
suggestions.

10- Calculating the objective functions value for the newly
selected vector. If this value is better than the worst har-
mony vector in the harmony matrix, it is then included in
the matrix, while the worst one is taken out of the matrix.
The harmony memory matrix is then sorted in descend-
ing order by the objective function value.
Note that: In these models, no weighting coefficient is re-
quired.

11- Repeating Steps 9 and 10 until the pre-selected maxi-
mum number of iterations is reached. This number is se-
lected for large enough cycles to observe that there is not
any further improvement in the resulted solution.

12- If a preferred solution is obtained, stop. Otherwise, up-
dating the HS algorithm by a new initial vector, which is
selected from two resulted solutions, and continuing
with step 9. This work focuses on the harmony search pa-
rameters with respect to the initial solution-setting-free
technique.

 By this way, hybridized genetic with bacterial foraging
optimization and harmony search reduce the convergence
time and enhance the accuracy.

2.2 The Proposed Algorithm's Pseudo-code

The pseudo-code as well as the flowchart (Fig. (2)) of the com-

plete algorithm is presented below:

(1) Genetic Algorithm

Step (1-1): Initialize population and parameters of GA:

Define fitness function F(x) = (f1(x) + f2(x) + + fk(x)) +

penalty parameter × (sum of all the problem constraints), k ≥

2 of objective functions, the decision varibles (x) = (x1, x2, ….,

xn)T, and n = the number of the decision variables.

Generate a new population of solutions (P):

Start with initial solutions (x) = (x1, x2, …., xn)T based on deci-

sion maker's opinion (for example, it can determine by initial

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1954
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

range as [minimum value of the individual optimal vectors :

maximum value of the individual optimal vectors]).

Define parameters of GA:

There are several parameters which characterize GA:

Population size -- specifies how many individuals that are in

each generation,

Population type -- specifies the data type of the input (double-

vector, bit-string, and custom) to the fitness function,

Creation function (CreationFcn) -- specifies the function that

creates the initial population to find the minimum of a func-

tion using the GA such as uniform, Gaussian, or custom,

Population initial range -- specifies the range of the vectors in

the initial population that is generated by the creation func-

tion. The first row contains lower bounds for the entries of the

vectors in the initial population, while the second row con-

tains upper bounds,

Crossover function (CrossoverFcn), Crossover probability

(pc), Crossover fraction (CrossoverFraction) in reproduction

options -- specifies the fraction of the next generation,

Mutation function (MutationFcn), Mutation probability (pm),

and Stopping criteria options that contain the following:

Generations number (Generations) -- Specifies the maximum

number of iterations the genetic algorithm will perform.

Time limit (TimeLimit) -- Specifies the maximum time in se-

conds the genetic algorithm runs before stopping.

Fitness limit (FitnessLimit) -- The algorithm stops if the best

fitness value is less than or equal to the value of fitness limit.

Stall generations (StallGenLimit) -- The algorithm stops if

there is no improvement in the best fitness value for the num-

ber of generations specified by Stall generations.

Stall time (StallTimeLimit) -- The algorithm stops if there is

no improvement in the best fitness value for an interval of

time in seconds that specified by Stall time.

Step 1-2. Find fitness of population: Evaluate the fitness func-

tion of each point for the population using the objective func-

tions and constraints of the problem. Also, apply the penalty

function method for constrained problems.

Repeat on this generation until a favorable efficient solution

is met:

Step 1-3. Parent selection: select the better solutions from the

old population of solutions by selection function.

Step 1-4. Perform the following genetic operators on selected

parent:

 1-4-1. Crossover operator: Apply crossover with probabil-

ity (pc) to parent for getting new solution.

 1-4-2. Mutation operator: Apply mutation with probability

(pm) of existing solution to create new solution.

Step 1-5. Decode and fitness calculation:

Select ga function- Genetic Algorithm in the solver field of

MATLAB software. The fitness function is called from the GA

to determine the fitness of each solution string generated dur-

ing the search.

Step 1-6. Survivor selection:

The survivor selection policy determines which individuals

are to be kicked out and which are to be kept in the next gen-

eration.

Step 1-7. Termination test:

If the preferred solution is not obtained, return to step 1-2.

Otherwise, stop and save this solution.

This process in an iterative manner is called generation until

the termination criteria (which setting by decision maker) is

reached.

 (2) Bacterial Foraging Optimization Algorithm

Step 2-1 (a). Transport the local solution obtained from the GA

to the BFO as an initial solution with a suitable value range in

each decision variable by decision maker (DM). Or set new

initial solution (with specification of each decision variable,

and a possible value range in each decision variable) if GA

closed to the preferred solution for the decision maker.

Step 2-1 (b). Initialize parameters:

Define fitness function F(x) = (f1(x) + f2(x) + + fk(x)), k ≥

2 of objective functions, the decision varibles (x) = (x1, x2, ….,

xn)T, and n = the number of the decision variables. The initial

range for every variable is determined by a range for each bac-

terium based on the number of bacterial in the population. For

example, if the number of bacterial = 4 and the number of var-

iables = 2, then the initial solutions set as:

x1= P1= (value11; value12; value13; value14)';

x2= P2= (value21; value22; value23; value24)';

Note that the penalty function method to deal with a con-

strained problem is not considered here.

Define p, S, Nc , Ns , Nre , Ned , Ped ,C (i) (i = 1, 2, . . ., S), θi,

Where:

p: Dimension of the search space,

S: The number of bacteria. It is a positive even integer,

Nc: Number of chemotactic steps,

Ns: Number of swim steps (or maximum number of steps),

Nre: The number of bacteria reproductions (splits) per genera-

tion,

Ned: The number of elimination and dispersal steps,

Ped: The probability that each bacterium will be eliminated/

dispersed,

C(i): The run-length unit (i.e., the chemotactic step size during

each run or tumble). Here, the same run-length unit is used for

all bacteria in the colony.

J (i, j, k) = Fitness value or cost of i-th bacteria in the j-th chem-

otaxis and k-th reproduction steps.

θ (i, j, k)= Position vector of i-th bacterium in j-th chemotactic

step and k-th reproduction steps.

Jbest (j, k) = Fitness of best position in the j-th chemotaxis and

k-th reproduction steps.

Jglobal= Fitness value or cost of the global best position in the

entire search space.

Step 2-2. Elimination-dispersal loop: l =l+ 1.

Step 2-3. Reproduction loop: k = k+ 1.

Step 2-4. Chemotaxis loop: j =j+ 1.

 2-4-1. For i = 1, 2…, S, take a chemotactic step for bacterium

 i as follows.

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Generation

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1955
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

 2-4-2. Compute fitness function, J (i, j, k, l).

 2-4-3. Let J last = J (i, j, k, l) to save this value since we may

 find better value via a run.

 2-4-4. Tumble: generate a random vector Δ (i) ∈ Rp with

 each element Δm(i), m = 1, 2, . . .,p, a random number

 on [−1, 1].

 2-4-5. Move: Compute θi(j+1, k, l).This results in a step of

 size C (i) in the direction of the tumble for bacteria i.

 2-4-6. Compute the fitness function J (i, j +1, k, l) with

 θi(j+1, k, l).

 2-4-7. Swim:

 (i) Let m =0 (counter for swim length)

 (ii) While m < Ns (if not climbed down too long) do

a) Let m = m+ 1

b) If J (i, j +1, k, l) < J last, define J last =J (i, j +1, k, l),

Then, another step of size C (i) in the same direction

will be taken as:

θi(j+1, k, l) = θi(j, k, l) + C (i) ,and use the

new generated θi(j+1, k, l) to compute the new J(i, j+ 1,

k, l).

c) Else Let m= Ns.

2-4-8. Go to next bacterium (i+1): if i ≠ S go to 2-4-2 to process

the next bacterium.

Step 2-5. If j < Nc, go to Step 2-4. In this case, continue chemo-

taxis since the life of the bacteria is not over.

Step 2-6. Reproduction:

For the given k and l, and for each i =1, 2, ... , S, let

Ji health = be the health of the bacteria. Sort bacte-

rium in order of ascending values (J health).

The Sr bacteria with the highest J health values die and the other

Sr bacteria with the best values split, and the copies that are

made are placed at the same location as their parent.

Step 2-7. If k < Nre go to Step 2-2. In this case, the number of

specified reproduction steps is not reached; start the next gen-

eration in the chemotactic loop.

Step 2-8. Elimination-dispersal: for i =1, 2, ... ,S, with proba-

bility Ped, eliminate and disperse each bacterium, which results

in keeping the number of bacteria in the population constant.

To do this, if a bacterium is eliminated, simply disperse one to

a random location on the optimization domain. If l < Ned, then

go to Step 2-6, otherwise, end.

(3) Harmony Search Algorithm

Step 3-1 (a). Transport the local solution obtained from the GA

or BFO to the HS as an initial solution with a suitable value

range in each decision variable by decision maker (DM). Or

set new initial solution (with specification of each decision

variable, and a possible value range in each decision variable)

if GA or BFO closed to the preferred solution for the decision

maker. For example, if the number of the harmony memory

size = 4 and the number of variables = 2, then the initial solu-

tions set as:

[The values of the first variable; the values of the second vari-

able] = [(value11 value12 value13 value14); (value21 value22

value23 value24)].

Step 3-1 (b). Set the parameters and initialize the HM:

Define fitness function F(x) = (f1(x) + f2(x) + + fk(x)) +

penalty parameter × (sum of all the problem constraints), k ≥ 2

of objective functions, the decision varibles (x) = (x1, x2, ….,

xn)T, and n = the number of the decision variables.

Where, the brief sub-pseudo-code of fitness function based on

penalty function method for constrained problem has been

provided below:

Function sum =Fitness (x)

Sum = cg (x)

Sum = (f1(x) + f2(x) + + fk(x)) + penalty (cg (x))

end

function constraints g(x) > 0

Constraint (1), Constraint (2), Constraint (3), …. , Constraint (m)

Sum = 0;

for i=1: number of inequality constraints= m

if (gx (i) < 0)

Sum = Sum ± penalty's parameter × gx (i);

end

end

End

Define (HMS), (HMCR), (PAR min), (PAR max), (bw min),

(bw max).

Define the maximum number of iterations (NI).

Step 3-2. Generate initial population (real number array

(HM)):

min = minimum visible value.

max = maximum visible value.

Step 3-3. Improvise a new harmony xnew as follows:

while (Stop condition (current iteration ≤ NI)) do

 for all decision variables (i = 1, 2, …, n) do

 If (rand (0, 1) < HMCR) then choose a value of one of the

solutions from the harmony memory (HM) for i

 If (rand (0, 1) < PAR) then adjust the value of i by:

 xnew (i) = xold (i) ± rand (0, 1) × bw

 end if

 else (with probability 1- HMCR) use a random value

for this decision variable

end if

 end for

Step 3-4. Update the HM (minimization objectives):

 If the new solution is better than the worst solution in the

harmony memory then accept the new harmony and replace

the worst solution with it.

 end if

end while.

Step 3-5. Find the current best solutions:

If termination criterion is reached, return the best solution in

the harmony memory; otherwise update the initial population

and go to Step 3-3.

End.

Note that:

1- The acceptable solution may be infeasible but have

less distance.

2- After each generation of GA, BFO, and HS, a typical

 ∆(i)
√∆

T
(i) ∆(i)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1956
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

and popular Euclidean distance is employed to measure

the distance between the utopia vector and a resulted so-

lution vector. Euclidean distance is defined as the

straight-line distance between two points. For N-

dimensional space, the Euclidean distance between these

two points’ Ui and Ai is given by:

 ED= (1)

Where, Ui (or Ai) is the coordinate of U (or A) in dimension i

[9]. The selected solution has the minimum Euclidean dis-

tance.

Yes

 Is

 a preferred

 efficient solution

based on minimum

 distance met

 ?

Stop and save
 the solution

R
e

p
ro

d
u

ct
io

n

Crossover

No

Iteration =

Iteration + 1

Updating the

initial population

and parameters

of GA

No

Yes

 Is

 acceptable
 solution

 ?

A

Set values for parameters

of BFOA

(p, S, Nc , Ns , Nre ,

Ned , Ped ,C (i))

Initialization of variables for BFOA

- Set suitable ranges for the obtained feasible

solution from GA, or

- Set a new initial solution by DM with speci-

fication of each decision variable, and a pos-

sible value range in each decision variable

Start GA

Selection

Mutation

Evaluation

Set iteration = 1

Set values for parameters of GA such as population

size, Pc, Pm, number of generations

Generate a new population

of solutions (P)

Yes

k > Nre

i > S

Yes

No

 Yes

Sw (i) < Ns

Swim N= N + 1

Sw (i) = N

No J(i, j) < J(i, j- 1)

 i = i + 1

No

Tumble

Yes

No

Compute the value of

cost function for each

bacterium i as J(i, j)

No

j > Nc

Chemotaxis loop

 Counter j = j +1

Yes

No

Reproduction loop

Counter k = k+1

l > Ned
No

 Is

 a preferred

 efficient solution

based on minimum

 distance met

 ?

B

Yes

Stop and save

the solution

Yes

C Elimination-dispersal
loop: l =l + 1

A

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1957
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

3 COMPARATIVE STUDY

In this section, some different multi-objectives examples are

used to test the proposed algorithm’s performance.

The code of these examples has been written with MATLAB

7.0. The key factor in these applications is how the range of

initial point is selected according to the problem with control-

ling algorithm’s parameters. Also here, the preferred solution

is selected from these algorithms according to their non-

dominance based on its distance from the utopia point.

Example (3.1):

In this example, we want to minimize two objectives, each

having one decision variable [4].

Min: (f1 = (x+ 2)2 – 10, f2 = (x- 2)2 + 20),

Subject to: -1.5 ≤ x ≤ 0.

The following graph plots two objective functions on the same

axis.

The two objectives have their minima at x*= -2 and x*=

+2 respectively. However, in a multiobjective problem, x= -2,

x= 2, and any solution in the range -2 ≤ x ≤ 2 is Pareto- opti-

mal. It is noted in [4] that there is no single solution to this

multiobjective problem. But, the goal of the proposed algo-

rithm is to find preferred solution in that range (ideally with a

good spread).

The Genetic Algorithm solver assumes the fitness function

will take one input x. The following fitness function computes

the value of each objective function and returns these values in

a single vector output.

Fitness Function =

 @ (x) ((x(1)+ 2)^2- 10+ (x(1)- 2)^2+20). (2)

The parameter settings for GA are as follows:

Population size: 20.0, Fitness limit: 10.0,

Crossover fraction: 0.7, Mutation function: uniform,

Stall generation limit and stall time limit are infinity,

The first population initial range is [-2: 2].

Fig. 3: Plot of objectives for example (3.1).

Fig. (2): Flowchart of the proposed solution

algorithm.

No Yes

 Is
 the new

harmony

better than a sorted
harmony in HM

?

Improvise a new harmony based

on three rules:

- Memory consideration

- Pitch adjusting

- Random choosing

Yes End & save
the solution

Updating the
initial HM and
parameters of
 HS

 Is

 a preferred

 efficient solution
based on minimum

 distance met

 ?

No

 Generate initial population (HM)

HM is initialized with as many
numbers of randomly generated
solution vectors as the size of HM
and sorted by values of objective
functions

Updating the

initial population

and parameters of

BFOA

C
No

B

 Is

 acceptable

 solution

 ?

Yes

Initialization of variables for HS optimization

- Set suitable ranges for the obtained local solu-

tion from GA, or BFO

- Set a new initial solution by DM with specifi-

cation of each decision variable, and a possible

value range in each decision variable

Set values for parameters of HSA

- Harmony memory size (HMS)

- Harmony memory consideration rate (HMCR)

- Pitch adjusting rate (PAR)

- Termination criterion (maximum number of the

search (NI))

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1958
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

 By direct search toolbox of MATLAB code 7.0, you can use

GAOPTIMSET for default GA options structure. The above

figure shows the converging process of the fitness values over

100 steps. The results of the first generation are:

x = -0.0561, the first objective is -6.221, the second objective

is 24.2275, and their distance from the utopia point is 5.6702.

 By followed population initial ranges ([-0.0037: 2.00],

[-0.0027:0.0123], [-4.3982e-004: 2.4134e-004], [-9.8796e-007:

7.2198e-006], [-7.9727e-008: 9.0011e-009], [-2.1705e-010:

3.9561e-010], [-7.1521e-011: 8.7339e-012]), the solution of GA

at last generation is as follows:

x = 2.6221e-012, the first objective is -6.0, the second objec-

tive is 24.0, the best fitness (that means the optimal solution of

the problem at equal weights) as seen in the following figure is

18.0 and their distance from the utopia point is 5.6569.

This solution of GA has the global minimum at the origin or

very near to the origin. As can be seen from following figure,

there is good convergence of the Pareto front. Preferred solu-

tion is obtained on the minimum convergence of the Pareto

front.

The second sub algorithm to minimize these objectives with
satisfying their constraints is bacterial forging optimization. It
studies the behavior of bacteria in a given search space. BFA is
coded as M-file in MATLAB platform.
Step 1-a: Bacteria Representation and initialize parameters:
Each bacterium's position represents one possible solution required

for the problem. The number of dimensions of search space is p. In

each dimension of search space, bacteria position is [0.0; 1.0]' for

next generation. In the each iteration of chemotaxis step, each bacte-

rium tumbles to the new random position. Position of ith bac-

terium in jth chemotaxis and kth reproduction step is defined

as:

x= P(1,: ,j+1,K, l); (3)

For initialization, we must choose p, S , Nc , Ns , Nre , Ned ,

Ped , and the C(i), i=1,2…… S. Calculations are restricted with-

in specified search ranges with the different parameters as

given in table 1. There two cases of the initial search ranges.

Case (1) is based on the output of GA, but case (2) is based on

free selected initial point. The other parameters used for BFO-

based trial and error selection are shown in table 1.

Step 1-b: Define and evaluate the fitness function of the al-

gorithm:

In each generation, each bacterium is evaluated, and a value of

goodness or fitness is returned by a fitness function. This evolu-

tion is driven by the fitness function.

The fitness function =

((x(S)+ 2)^2 -10 + (x(S)- 2)^2 + 20). (4)

Step 2: Execute the bacterium chemotaxis cycle.

Step 3: Run the bacterial dispersal cycle.

Step 4: Evaluate and select the best solution:

After each generation of BFO, the Euclidean distance is em-

ployed to measure the distance between the utopia vector and

the resulted solution vector.

Obviously when the bacterium has smaller C(i) = 0.00001, it is

closed to its start point and not able to escape from it. But, the

10 20 30 40 50 60 70 80 90 100
18

19

20

21

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 18.0063 Mean: 18.0063

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 4: The first generation of GA for

example (3.1).

10 20 30 40 50 60 70 80 90 100
17

17.5

18

18.5

19

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 18 Mean: 18

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 5: The last generation of GA for example (3.1).

 Fig. 6: Experimental results for example (3.1).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1959
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

bacterium with larger C(i) = 0.1 can explore the whole search

space and escape from these local solutions to enter the do-

main with the efficient solutions.

Some or all parameters may be change during the evolution to

produce significant improvement in performance results of

the algorithm.

With these values of controller BFO parameters that are cho-

sen after a considerable number of trials and error, the output

of BFO is x = 0, then the first objective is -6.0, the second objec-

tive is 24.0, and their distance from the utopia point is 5.6569.

Then, the BFO gives better benefits when compared to GA.

 In next phase, the harmony search algorithm is reinitialized

at point (-7.1521e-011, 0.0, 1.0, 2.0) with 1000 run-length unit

(NI) and HMS= 4. The sub-pseudo-code of the complete algo-

rithm is presented below:

Start

Objective function, f(x) =

(f1 + f2) = ((x+ 2)2 – 10 + (x- 2)2 + 20) (5)

Generate initial harmonics, [-7.1521e-011 0.0 1.0 2.0]

Define pitch adjusting rate, (PAR min= 0.04, PAR max= 0.09,

bw min= 0.01, and bw max= 0.07)

Define harmony memory accepting rate (HMCR= 0.07)

While run-length < Max number of iterations (1000)

Generate new harmonics by accepting best harmonics

Adjust pitch to get new harmonics (solutions)

if (rand > HMCR= 0.07),

choose an existing harmonic randomly

else if (rand > pitch adjusting rate), adjust the pitch randomly

within limits

else generate new harmonics via randomization

end if

Accept the new harmonics (solutions) if better

end while

Find the current best solutions

end

Finally for few times of run, the current best solution of HS is

similar to BFO with less time search. This example has a uni-

modal variable, and only one minimum.

Example (3.2):

In this example, we consider two objectives, and two variables

minimization optimization problem [2] as shown below to

better illustrate the working of the GA, BFO, and HS.

Min: (f1 = x1, f2 = (1+x2) / x1),

Subject to: 0.1 ≤ x1 ≤ 1,

 0 ≤ x2 ≤ 5.

Where, f1
*= 0.1 with (x1

*= 0.1, x2
*= 0), and f2

*= 1.0 with (x1
*=1.0,

x2
*= 0).

Now we show the step by step procedure of the proposed al-

gorithm.

A typical genetic algorithm procedure takes the following

steps:

A population of candidate solutions is initialized as follows:

Population initial range = ([0.1; 1.0], [0.1; 0.7912], [0.1; 0.7754],

[0.1; 0.7663], [0.1; 0.7602], [0.1; 0.7430], [0.1; 0.7403], [0.1;

0.1026], [0.0; 0.1000], [0.0; 0.0015]); Population size = 20, 10, 6;

Crossover fraction = 0.8, 0.5, 0.01, 0.001; Mutation function =

Uniform; Fitness limit = 2; Stall generation limit = Stall time

limit = infinity and Penalty parameter = 0.1. New solutions are

created by applying genetic operators (mutation and/or

crossover).

The fitness (@ (x) (x(1)+ ((x(2)+ 1)/ x(1)) + (Penalty parameter

0.10)*(x(1) + 0.1+ x(1) -1.0 + x(2) - 5))) of the resulting solutions

are evaluated and suitable selection strategy is then applied to

determine which solutions will be maintained into the next

generation. The procedure is then iterated.

 In this example, the penalty function is used to transform

this constrained problem to unconstrained problem. The two

following various graphs show GA process according to fit-

ness evolution.

The first solution of GA is as follows:

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 1.7776 Mean: 3.0099

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

 Fig. 7: The first generation of GA for example (3.2).

Table 1. Control parameters of the BFA used

in example (3.1)

Data
Range/ Value

Case (1)

Range/ Value

Case (2)

The initial

solution
[-7.1521e-011; 0.0; 1.0; 2.0] [0.0; 1.0]

S 4 2

Nc 1 1

Ns 1 1

Nre 1 1

Ned 2 2

Ped 0.1, 0.2 0.001, 0.1

The run-

length

C(i)

0.00001*ones(S,1) 0.0001*ones(S,1),

0.00001*ones(S,1)

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1960
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

 x1 = 0.9551, x2 = 0.1521, f1 =0.9551, f2 = 1.2062, total of two ob-

jectives = 2.1614, the distance from the utopia point = 0.8796.

But, the last solution of GA is as follows: x1 = 0.7403, x2 =

1.6554E-07, f1 = 0.7403, f2 = 1.3508, total of two objectives=

2.0911, the distance from the utopia point = 0.7301.

 Following, the BFO process with the path of four bacteria

that start at (0.1; 0.4; 0.7; 1.0), and (0.0; 0.00000016554; 0.1; 1.0)

with different C(i). The parameter setting for BFO is S = 4, 2;

Nc = 2, 3, 1; Ns = 1, 3, 2; Nre =1, 3; Ned = 1, 3, 2; Ped = 0.01,

0.1, 0.12; C(i) = 0. 001*ones (S,1), 0.01*ones (S,1) and 0.1*ones

(S,1). Fig. 8, and Fig. 9 illustrate the foraging process of the

function values found by these bacteria.

The first solution of BFO is as follows:

x1= 1.0004, x2= 0.0004, f1 = 1.0004, f2 = 1.0, total OFs = 2.0004, C1

= 1.0004, C2 = 4.0987e-004, and distance = 3.9276e-004.

After some generations with the initial solutions (0.7409;

0.7374) and (0.0000; 0.0000), the last solution of BFO is as fol-

lows: x1= 0.7403, x2= 0.0000, f1 = 0.7403, f2 = 1.3508, total OFs =

2.0911, distance = 0.7301.

 From the illustrated graphical and above results, the GA-BFO

algorithm outperformed over genetic algorithm in terms of

solution accuracy and convergence speed to get a favorable

solution.

The following sub-algorithm (HS) starts with [0.1 0.4 0.7 1.0;

0.0 0.00000016554 0.1 1.0]; which is followed by [0.1 0.4 0.7 1.0;

0.0 0.0 0.0 0.0], [0.2140 0.4 0.7 1.0; 0.0 0.0 0.0 0.0], [0.7 0.7466; 0.0

0.0], [0.7397 0.7420; 0.0 0.0], [0.7397 0.7410; 0.0 0.0], [0.7401

0.7407; 0.0 0.0], and [0.7401 0.7404; 0.0 0.0] in several iterations,

respectively. The other parameters are setting as: NI= (7000,

1000), HMS= (4, 3, 2), HMCR= (0.07, 0.7, 0.02), PAR min=

(0.04, 0.4, 0.07), PAR max = (0.09, 0.9), bw min = (0.01, 0.1,

0.05), bw max= (0.07, 0.7, 0.06), and Penalty parameter =

(-0.0001). The resulted solution as graphing in the following

figure is x1= 0.7403, x2= 0.0000, f1 = 0.7403, f2 = 1.3508, total

OFs = 2.0911, distance = 0.7301.

It is clearly seen from the above figure, even though there is

good convergence and quite good diversity, there is the pre-

ferred solution that has minimum distance to the utopia point

10 20 30 40 50 60 70 80 90 100
1

2

3

4

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 1.997 Mean: 2.0216

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 8: The generation of GA when x1= 0.7403 and

x2= 0.2398 for example (3.2).

Efficient solution given by different Bacteria

Range of search space for x1

R
an

ge
 o

f
se

ar
ch

 s
pa

ce
 o

f x
2

Fig. 9: The first solutions of BFO for example (3.2).

R
an

ge
 o

f
se

ar
ch

 s
p

ac
e

of
 x

2

Range of search space for x1

Efficient solution given by different Bacteria

Fig. 10: The last solutions of BFO for example (3.2).

 Fig. 11: Experimental results for example (3.2).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1961
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

and it outsides the resulted Pareto front from [2]. The pro-

posed BF–HS algorithm converges to the preferred solution

much faster than the GA approach.

Example (3.3):

The example shows multi-objective convex non-linear pro-

gramming problem. This problem was solved by an extended

method of TOPSIS for the convex non-linear multi-objective

problems in [7].

Max: (f1 = x1
2 + x2

2 + x3
2, f2 = (x1 - 1)2 + x2

2+ (x3 - 2)2),

Min: (f3 = 2x1 + x2
2+ x3)

Subject to: -x1 + 3x2 - 4x3 + 6 ≥ 0,

 -2x1
2 - 3x2 - x3 + 10 ≥ 0,

 x1, x2, x3 R3, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2.

Where, the individuals optimal are as follows:

f1
*= -11.1111 with (x1

* = 0, x2
* = 2.66667, x3*= 2.0), f2

*= -16.1111

with (x1
* = 0, x2

* = 3.3333, x3
* = 0) and f3

*=0 with x1
* = x2

* = x3
*

= 0.

The solution by the proposed algorithm:

To solve such problem, it makes sense to begin by genetic al-

gorithm. It selects at first some values for its parameters as

seen in the following table.

The first obtained solution from GA is as follows:

x1 = 2.5080, x2 = 3.1743, x3 = 2.9268. Thus, f1 = -24.932, f2 =

-13.209, f3 = 18.019, total OFs = -20.122, and the distance =

22.894.

After some iterations, the last solution of GA is as follows:

x1 = 0.0985, x2 = 2.8460, x3 = 0.1764. Then, f1 = -8.140, f2 =

-12.238, f3 = 8.473, total OFs = -11.905, C1 = -7.7338, C2 = 8.734,

distance = 9.7785. Fig. 12 shows the fitness function for last

generation of this example following an increase in Fig. 11 by

4.7962 but a decrease in the initial point from [0.0: 3.3333] to

[0.0: 3.2069] with some changing in the described parameter

values. Also, the distance decreased from 22.894 to 9.7785.

 The second sub algorithm (Bacterial) starts with re-

initialization of the outputs of GA as shown in the following

table.

The first solution of BFO is as follows:

Table 2. Parameters of genetic algorithm
for example (3.3)

Parameters Range/ Value/ Function

Population initial range
[0.0; 3.3333], [0.0; 3.2880],
[0.0; 3.2412], [0.0; 3.2069]

Population size 10, 6, 18

Crossover fraction 0.5, 0.4, 0.6, 0.9

Mutation function Uniform

Fitness limit -31.5

Stall generation limit Infinity

Stall time limit Infinity

Penalty parameter 0.1

10 20 30 40 50 60 70 80 90 100
-20

-15

-10

Generation

Fi
tn

es
s

va
lu

e

Best: -18.7893 Mean: -18.7893

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 12: The first generation of GA for example (3.3).

10 20 30 40 50 60 70 80 90 100
-14

-12

-10

-8

-6

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: -13.9931 Mean: -13.9931

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 13: The last generation of GA for example (3.3).

Table 3. Controller parameters of the BFA
used in example (3.3)

Data Range/ Value

The initial solu-
tion

At first generation:
p1= [0.0000; 0.0000; 0.0000; 2.8916; 3.0000; 3.2992;

3.8005; 3.8392]
p2= [0.0000; 2.6667; 3.3333; 3.3472; 3.3531; 3.3668;

3.6676; 4.0000]
p3= [0.0000; 0.0000; 0.0311; 2.0000; 3.2000; 3.2163;

3.2527; 3.7663]
At second generation:
p1= [0.0000; 0.0000; 0.0000; 0.0000]
p2= [3.3333; 2.6668; 2.6667; 0.0000]
p3= [0.0311; 0.0002; 0.0000; 0.0000]
.
.
At last generation:
p1= [0.0000; 0.0000]
p2= [2.7223; 2.7218]
p3= [0.0000; 0.0000]

S 8, 4, 2

Nc 1, 2

Ns 2, 1

Nre 1, 2

Ned 4, 1

Ped 0.001, 0.01, 0.1

The run length 0.0001*ones(s,1), 0.01*ones(s,1), 0.001*ones(s,1)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1962
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

x1= 0.0003, x2= 2.6668, x3= 0.0002, f1 = -7.112, f2 = -12.110, f3 =

7.112, total OFs = -12.110, C1 = 13.9993, C2 = 1.9994, C3 =

2.8176e-004, C4 = 2.6668, C5 = 2.1643e-004, and distance =

9.088.

After several generations the final results are:

x1= 0.0, x2= 2.7220, x3= 0, f1 = -7.4093, f2 = -12.4093, f3 = 7.4093,

total OFs = -12.4093, C1 = 14.1660, C2 = 1.8340, and distance =

9.0721.

Again, the BFO is successful in solving the problem. The ob-

tained results show that the distance from the utopia point is

considerably reduced over the GA. The following figure illus-

trates the final best positions of the bacteria. In summary,

good performance (lower distance from the utopia point and

acceptable settling time) is obtained.

To continue with harmony algorithm, at first, the initial values

of its parameters are setting as seen in the Table 4.

The first solutions of HS (at best value and worst value in

the iteration) are:

x1= 0, x2= 2.6664, x3= 0, f1 = -7.1097, f2 = -12.1097, f3 = 7.1097,

total of objectives = -12.1097, C1 = 13.9992, C2 = 2.0008, and

distance = 9.0868.

Table 4. Parameters of the HSA for example (3.3)

Data Range/ Value

Initial
solution

At first iteration:

[0.0000 0.0000 0.0000 2.8916 3.0000 3.2992

3.8005 3.8392; 0.0000 2.6667 3.3333 3.3472

3.3531 3.3668 3.6676 4.0000; 0.0000 0.0000

0.0311 2.0000 3.2000 3.2163 3.2527 3.7663]

At second iteration:

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000; 2.6667 3.3333 3.3472 3.3531 3.3668

3.6676 4.0000; 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000]

.

.

At last iteration:

 [0.0000 0.0000 0.0000 0.0000 0.0000; 2.7217

2.7224 2.7474 3.3332 3.3333; 0.0000 0.0000

0.0000 0.0000 0.0000]

NI 7000

HMS 4, 2

HMCR 0.2, 0.7

PAR min 0.7, 0.4

PAR max 0.9

bw min 0.5, 0.1

bw max 0.6, 0.7

Penalty
parameter

-0.0001

The last values at best and worst generation of HS are:

x1= 0, x2= 2.7220, x3= 0, f1 = -7.4093, f2 = -12.4093, f3 = 7.4093,

total of objectives = -12.4093, C1 = 14.166, C2 = 1.834, C3 = 0, C4

= 2.7220, C5 = 0, and distance = 9.0721.

It is easy to see that these results from both BFO and HS are

equivalent but with less computational time is achieved by

HS.

 On other hand, one of the Pareto-optimal solutions in [7] is x

Efficient solution given by different Bacteria

R
a
n

g
e
 o

f
se

a
r
c
h

 s
p

a
c
e
 f

o
r
 x

3

Fig. 14: The first solutions of BFO generations for
example (3.3).

Efficient solution given by different Bacteria

R
a

n
g

e
 o

f
se

a
rc

h
 s

p
a

ce
 f

o
r

x
3

Fig. 15: The last solutions of BFO for example (3.3).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1963
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

= (0.00, 0.05, 0.99) that has distance from the utopia point =

17.3796. So, the above results indicate that the hybrid algo-

rithms are superior to the others. They consume considerably

short search time.

Example (3.4):

The following benchmark problem was used in the paper [10].

This problem was relatively difficult becauce the constraints

divided the Pareto frontier into five regions which created

difficulties for optimization algorithms to find all parts of the

Pareto frontier as shown in the figure (18). It consists of two

nonlinear objectives and six constraints.

Min: f1 = - (25(x1- 2)2 + (x2- 2)2 + (x3- 1)2 + (x4- 4)2 + (x5- 1)2),

Min: f2 = (x1
2 + x2

2 + x3
2 + x4

2 + x5
2 + x6

2),

Subject to: x1+ x2 - 2 ≥ 0,

 - x1- x2 + 6 ≥ 0,

 x1- x2 + 2 ≥ 0,

 -x1+ 3x2 + 2 ≥ 0,

 - (x3- 3)2 - x4 + 4 ≥ 0,

 (x5- 3)2 + x6 - 4 ≥ 0,

 x1, x2, x6 [0;10], x4 [0;6], x3, x5 [1;5].

The first process of the proposed algorithm (Genetic search):

This section starts with showing the parametric set up of the

algorithmic parameters. These parameters are given below.

Population initial range: [0.0: 5.0], Population size: 12, Crosso-

ver fraction: 0.5, Mutation function: Uniform, Fitness limit: -

148.0, Stall generation limit: Infinity, Stall time limit: Infinity,

and Penalty parameter: 0.01.

After one generation, the obtained solutions are as follows: x1

= 4.5843, x2 = 1.6521, x3 = 0.3979, x4 = 2.9167, x5 = 0.5045, x6 =

0.0207, f1 = -168.8678, f2 = 32.6657, total of objectives =

-136.2021, C1 =4.2364, C2 = -0.2364, C3 =4.9322, C4 =2.3720,

C5 = -5.6876, C6 = 2.2482, and the distance from utopia point

=35.4568. This process of GA is below graphed.

 But after several iterations, the last solutions are:

x1 = 4.4095, x2 = 1.0231, x3 = 0.7322, x4 = 1.6200, x5 = 0.2534,

x6 = 0.6058, f1 = -152.3901, f2 = 24.0821, total of objectives =

-128.3080, C1 = 3.4326, C2 = 0.5674, C3 = 5.3864, C4 = 0.6598,

C5 = -2. 6729, C6 = 4.1496 and distance = 20.5564.

The second process of the proposed algorithm (Bacterial

foraging):

To create the first generation, BFA sets some values for its con-

troller parameters as shown in the following table.

Table 5. Controller parameters of the BFA used

in example (3.4)

Data Range/ Value

The

 initial

solution

At first generation:
p1= [0.0000; 1.0000; 4.2764; 4.3157; 4.3762;

4.3945; 4.4095; 4.4197; 4.4339; 4.4394;
4.4436; 4.4556; 4.4940; 4.5843]

p2= [0.3154; 0.4392; 0.7484; 0.7584; 0.7631;
0.9234; 1.0000; 1.0231; 1.1211; 1.2841;
1.4701; 1.6521; 1.6763; 2.0000]

p3= [0.1895; 0.2811; 0.2880; 0.3979; 0.6405;
0.7322; 1.0000; 1.0246; 1.0957; 1.1875;
1.2018; 1.7322; 2.0836; 5.0000]

p4= [0.0000; 0.0000; 1.0090; 1.2875; 1.6200;
1.6993; 2.0557; 2.1389; 2.1951; 2.3347;
2.6410; 2.6511; 2.7221; 2.9167]

p5= [0.2534; 0.3572; 0.4655; 0.4983; 0.5045;
0.5396; 0.5638; 0.6520; 0.7395; 0.8358;
1.0000; 1.2796; 1.9686; 5.0000]

p6= [0.0000; 0.0000; 0.0033; 0.0098; 0.0207;
0.0977; 0.1564; 0.2762; 0.6058; 0.7952;
0.8240; 1.3017; 0.3194; 1.3471]

At second generation:

p1= [4.4095; 4.3947; 4.3945; 4.3762; 4.3157;
4.2764]
p2= [1.0000; 0.9235; 0.9234; 0.7631; 0.7584;
0.7484]
p3= [1.2018; 1.1875; 1.0957; 1.0246; 1.0000;
0.7322]
p4= [1.6994; 1.6200; 1.2875; 1.0090; 0.0000;

Fig. 16: The first generation of GA for example (3.4).

Fig. 17: The last generation of GA for example (3.4).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1964
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

0.0000]
p5= [5.0000; 1.9686; 1.2796; 1.0000; 0.8358;
0.5397]
p6= [0.0978; 0.0207; 0.0098; 0.0033; 0.0000;
0.0000]
.
.
.
At last generation:

p1= [4.2777; 4.2777; 4.2777; 4.2777]

p2= [1.0000; 1.0000; 1.0000; 1.0000]

p3= [1.0000; 1.0000; 1.0000; 1.0000]

p4= [0.0000; 0.0000; 0.0000; 0.0000]

p5= [1.0003; 1.0000; 0.9998; 0.9994]

p6= [0.0000; 0.0000; 0.0000; 0.0000]

S 14, 6, 4

Nc 1, 2

Ns 2, 1

Nre 1

Ned 3, 1

Ped 0.01

The run

length

0.0001*ones(S,1), 0.001*ones(S,1),

0.01*ones(S,1), 0.1*ones(S,1), 0.12*ones(S,1),

0.02*ones(S,1)

After several generations of BFO, the two sub-algorithms
converge to the best result, which hopefully represents the
favorable efficient solution of the problem to decision maker.
The solutions that obtained by BFA are presented in the fol-
lowing table.

Table 6. The first and last solution of BFO for example

(3.4)

Data The first solution The last solution

x1 4.3947 4.2777

x2 0.9235 1.0000

x3 0.7322 1.0000

x4 1.6994 0.0000

x5 0.5397 1.0000

x6 0.0978 0.0000

f1 -150.0999 -146.6979

f2 28.8912 21.2987

Total

objectives
-126.2087 -125.3992

C1 3.3182 3.2777

C2 0.6818 0.7223

C3 5.4712 5.2777

C4 0.3758 0.7223

C5 -2.8423 0.0000

C6 2.1509 0.0000

Distance 20.0017 17.34765

After that, the harmony search works with the outputs of GA

and all individual objective fi
*; as initial solutions; to verify the

GA-BFOA performance. Where, f1
*= -148.0 with (x1

*= 0.0, x2
*=

2.0, x3
*= 5.0, x4

*= 0.0, x5
*= 5.0, x6

*= 8.0), and f2
*= 4.0 with (x1

*=

1.0, x2
*= 1.0, x3

*= 1.0, x4
*= 0.0, x5

*= 1.0, x6
*= 0.0).

Table 7. Parameters of the HSA for example (3.4)

Data Range/ Value

 Initial
 solution

At first iteration:
[0.0000 1.0000 4.2764 4.3157 4.3762 4.3945

4.4095 4.4197 4.4339 4.4394 4.4436 4.4556
4.4940 4.5843;

0.3154 0.4392 0.7484 0.7584 0.7631 0.9234
1.0000 1.0231 1.1211 1.2841 1.4701 1.6521
1.6763 2.0000; 0.1895 0.2811 0.2880 0.3979
0.6405 0.7322 1.0000 1.0246 1.0957 1.1875
1.2018 1.7322 2.0836 5.0000;

0.0000 0.0000 1.0090 1.2875 1.6200 1.6993
2.0557 2.1389 2.1951 2.3347 2.6410 2.6511
2.7221 2.9167; 0.2534 0.3572 0.4655 0.4983
0.5045 0.5396 0.5638 0.6520 0.7395 0.8358
1.0000 1.2796 1.9686 5.0000; 0.0000 0.0000
0.0033 0.0098 0.0207 0.0977 0.1564 0.2762
0.6058 0.7952 0.8240 1.3017 0.3194 1.3471]

At second iteration:
[4.2764 4.3157 4.3762 4.3945 4.4095 4.4197

4.4339 4.4394 4.4436 4.4556 4.4940 4.5843;
0.7484 0.7584 0.7631 0.9234 1.0000 1.0231
1.1211 1.2841 1.4701 1.6521 1.6763 2.0000;
0.2880 0.3979 0.6405 0.7322 1.0000 1.0246
1.0957 1.1875 1.2018 1.7322 2.0836 5.0000;
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;
0.4655 0.4983 0.5045 0.5396 0.5638 0.6520
0.7395 0.8358 1.0000 1.2796 1.9686 5.0000;
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

.

.
At last iteration:
[4.2777 4.2777; 1.0000 1.0000; 1.0000 1.0000;

0.0000 0.0000; 0.9997 1.0000; 0.0000 0.0000]

 NI 1000, 2000

HMS 7, 5, 4

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1965
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

HMCR 0.9, 0.09, 0.7, 0.07

PAR
min

0.4, 0.04

 PAR
 max

0.9, 0.09

bw min 0.1, 0.01

bw max 0.7, 0.07

Penalty
parameter

-0.0001

The first solution of HS with two ranges of iterations:

At best value in the iteration:

x1=0.0002, x2= 0.3156, x3= 0.1897, x4= 0.0000, x5= 0.2534, x6=

0.0000, f1 = -120.0312, f2 = 0.1998, total objectives = -119.8314,

C1 = -1.6842, C2 = 5.6842, C3 = 1.6846, C4 = 2.9466, C5 = -3.8978,

C6 = 3.5438, distance from utopia point = 28.2257.

At worst value in the iteration:

x1= 0.0006, x2= 0.3163, x3= 0.1903, x4= 0.0000, x5= 0.2544, x6=

0.0000, f1 = -119.9864, f2 =0.2010, total of objectives = -119.7854,

C1 = -1.6831, C2 = 5.6831, C3 = 1.6843, C4 = 2.9483, C5 = -3.8944,

C6 = 3.5383, distance = 28.2700.

The final solution:

At best value in the iteration:

x1= x2= x3 = x4= x5= x6= 0.0000, f1 = -122.0000, f2 = 0.0000, C1 =

-2.0000, C2 = 6.0000, C3 = 2.0000, C4 = 2.0000, C5 = -5.0000, C6 =

5.0000, distance = 26.3059.

At worst value in the iteration:

x1= 4.2777, x2= 1.0000, x3= 1.0000, x4= 0.0000, x5= 1.0000, x6=

0.0000, f1 = -146.6979, f2 = 21.2987, total of objectives =

-125.3992, C1 = 3.2777, C2 = 0.7223, C3 = 5.2777, C4 = 0.7223, C5

= 0.0000, C6 = 0.0000, distance = 17.34765.

 As is illustrated in the above results and figure, the proposed

algorithm has faster convergence compared with similar algo-

rithms. Also, the sub-algorithm BFO and harmony search pro-

duce perfect results than other sub-algorithm (GA) for all

types of such variant problems.

4 EXPERIMENTAL RESULTS and ANALYSES

 This paper presents a new approach by hybridizing genetic

algorithm with bacterial foraging optimization and harmony

search. The different comparative examples are examined to

show the effectiveness of the proposed algorithm. The follow-

ing performance measures are used for this comparative

study: (a) quality of the final solution based on achieving min-

imum distance from the utopia point, (b) speed of conver-

gence towards the favorite efficient solution, and (c) scalability

of the algorithms against the growth of dimensions for differ-

ent problems.

 The experiments were carried out to compare three intelli-

gent algorithms that are included in the proposed algorithm

on four test problems with dimensions of one, two, three and

six. The major findings of this study are as follows:

 Despite the genetic optimization technique requires a very

long run time that may be several hours or more several

hours, it gave good results (as in the first and second exam-

ples) depending on the size of the system under study.

 BFO algorithm has been successfully applied in several do-

mains of the most complex problems over the GA.

 Although the dimensions of test problems are increased,

BFO and HS exhibit good search capabilities and conver-

gence faster than GA algorithm on most of the test problems.

 The experimental results suggest that the results from HS are

better than results from other models. The performance of

BFO is satisfactory for all the problems. Where, the perfor-

mance of BFA is nearby same as HS.

 Also, this comparative study shows the superiority of the

proposed algorithm over other algorithms commonly used

in the literature of the multi-objective optimization prob-

lems.

 The harmony algorithm works very well in different such

problems. Where, it yielded more accurate final results con-

suming lesser amount of computational time in all the test

cases. So, this is a promising technique that can be used in

complex problems.

 The novel approach will be useful to solve many different of

multi-objective applications.

5 CONCLUSION

 The results from the proposed algorithm are shown to be

robust and extendable, suggesting the potential of applying

the BFO and HS for harder higher-dimensional and dynamic

optimization problems in different applications.

 HS has many features that make it as a preferable tech-

nique and also to be combined with other meta-heuristic algo-

rithms.

Utopia point




Preferred

solution

f2

f1

Fig. 18: The Pareto-optimal and Preferred solution of
example (3.4).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018 1966
ISSN 2229-5518

IJSER © 2018

http://www.ijser.org

ACKNOWLEDGMENT

 At first thanks be to ALLAH for his guidance and supports

in showing us the path.

 Secondly, I would like to thank Prof. Dr. Mahmoud Mostafa

El-Sherbiny (Operations Research and Management Department,

Institute of Statistical Studies and Research, Cairo University,

Egypt) for his valuable comments.

REFERENCES

[1] Alia Youssef Gebreel, "An overview of genetic algorithm, bacterial

foraging algorithm, and harmony search algorithm", Global Scientfic

Journals, Vol. 6, No.9, PP. 165-189, Septemer (2018).

[2] Indresh Kumar Gupta, Jeetendra Kumar, "VEGA and MOGA an

approach to multi-objective optimization", International Journal of Ad-

vanced Research in Computer Science and Software Engineering, ISSN:

2277 128X, Vol. 5, No. 4, PP. 865- 870, (2015).

[3] Internet: Antonio L´opez Jaimes, Sa´ul Zapotecas Mart´ınez, Carlos

A. Coello Coello, "An introduction to multiobjective optimization

techniques", Nova Science Publishers, Inc., Chapter (1), PP. 1-26.

[4] Internet: Performing a multiobjective optimization using the genetic

algorithm, https:// www. mathworks. com/ help/ gads/ examples/

performing- a- multiobjective- optimization- using- the- genetic-

algorithm.html.
[5] Kalyanmoy Deb, J. Sundar, Udaya Bhaskara Rao N. and Shamik

Chaudhuri, ―Reference point based multi-objective optimization us-

ing evolutionary algorithms‖, International Journal of Computational In-

telligence Research, ISSN 0973-1873 Vol.2, No.3, PP. 273–286, (2006).

[6] Kang Seok Lee, Zong Woo Geem, ―A new meta-heuristic algorithm

for continuous engineering optimization: harmony search theory and

practice‖, Computer methods in applied mechanics engineering, 194, PP.

3902–3933, (2005).
[7] Majid Rafei, Samin Ebrahim Sorkhabi, Mohammad Reza Mosavi,

"Multi-objective optimization by means of multi-dimensional MLP

neural networks", Neural Network World 1/14, PP. 31- 56, (2013).

[8] MATLAB software, Version 7.0, (2004).
[9] Rasleen Jakhar, Navdeep Kaur, and Ramandeep Singh, "Face recog-

nition using bacteria foraging optimization-based selected features",

(IJACSA) International Journal of Advanced Computer Science and Appli-

cations, Special Issue on Artificial Intelligence, PP. 106-111.

[10] Valdimir Sevasty Anov, "Hybrid multi- gradient explorer algorithm

for global multi-objective optimization", American Institute of Aero-

nautics and Astronautics, (10), 94-99, PP. 1-15, eartius, Inc., (2013).
[11] Waiel Fathi Abd El-Wahed, "A seminar on intelligent optimization",

Faculty of Computers & Information, Menoufia University, Egypt,
October, (2010).

[12] W. J. Tang and Q. H. Wu, ―Biologically inspired optimization: a re-
view‖, Transactions of the Institute of Measurement and Control Vol. 31,
No. 6, PP. 495–515, (2009).

IJSER

http://www.ijser.org/

