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Developing an Intelligent Interactive Approach for 
Multi-objective Optimization Problems  

Alia Youssef Gebreel  

 

Abstract— This paper presents three intelligent algorithms, and combines all of them for solving some interactive multi-objective 

optimization problems. The hybrid optimization model combines Genetic Algorithm and Bacterial Foraging Optimization (BFO) with 

Harmony Search (HS) algorithm. This model is being designed and implemented in the hope to improve performance of GA and help BFO 

to escape from the local minima or maxima. Where, genetic algorithm is search based on the concepts of natural selection and genetics. 

BFO simulated the life cycles and the foraging behaviors of bacterial, which are called Escherichia coli. HS originally was inspired by the 

analogy between music improvisation and the optimization process. Also, a comparative study is presented to clarify the development 

approach based on the resulted solution's distance from the utopia point. 

Index Terms— Genetic algorithm, Bacterial foraging optimization algorithm, Harmony search algorithm.                  

——————————      —————————— 

1 INTRODUCTION                                                                     

HE classical interactive multi-criterion optimization meth-
ods demand the decision-makers to suggest a reference 
direction or reference points or other clues [5] which result 

in a preferred set of solutions on the Pareto-optimal front. It is 
often necessary for finding a single solution (or solutions) to 
optimization problem with conflicting criteria. 

 

In the 20th century, artificial intelligence (AI) was one of the 

cutting-edge research fields. Over the second half period of 

this century, many methodologies have been investigated to 

explore the similarity between natural evolution and problem-

solving algorithms, such as genetic algorithm, evolution strat-

egies, evolutionary programming, genetic programming, par-

ticle swarm, and probabilistic model building genetic algo-

rithm or estimation of distribution algorithm are based on the 

principle of evolution (survival-of-the-fittest) and imitate some 

natural phenomena (genetic inheritance) [3, 6, 12].   

 
Artificial intelligence tools may be classified into the following 
models: 

 Genetic Algorithms. 
 Expert System. 
 Decision Support System. 
 Fuzzy Logic Expert system. 
 Artificial Neural Networks. 
 Neuro-Fuzzy Systems. 
 Simulated Annealing. 
 Ant-Colony Optimization. 
 Swarm Optimization. 
 DNA Computing. 
 Artificial Immune System. 
 Bacteria Foraging Optimization. 
 Harmony Search Algorithm. 

The corner stones of the optimization Model are as follows: 

1- Problem definition. 
2- Defining the decision variables.  
3- Data collection and classification.  
4- Model developing. 
5- Developing the solution procedure.  
6- Model testing (Benchmark functions). 
7- Model implementation. 
8- Feedback to improve the model performance. 
The relationship between artificial intelligence and optimition 
is represented in the following figure [11]. 
To further enhance the optimization performances, an adap-
tive hybrid artificial intelligent algorithm will be studied in 
this research. 

 

  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
        Alia [1] presented an overview of GA, BFA, and HA. The 
purpose of this paper is to introduce a novel approach, which 
integrates the genetic algorithm, and bacterial foraging algo-
rithm with the harmony algorithm to find a preferred solution. 
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 Fig. (1): Relationship between AI and optimization. 
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It is accomplished by testing these algorithms on some differ-
ent examples. The integrated approach outperforms than ap-
plying every one of these three algorithms.  Moreover, it has 
better performance for finding a best solution compared to the 
others reported in literature of the multi-objective optimiza-
tion problems. Where, it provides simple ways to generate 
efficient solutions for the decision maker in the multi- objec-
tive problems. Thus, the decision maker can select his or her 
favorable efficient solution. Here, the decision maker interacts 
with computer program.  
The major procedures of any one of these models can be ex-
pressed as follows: 

1. Generate an initial population (t) based on the decision 
maker.  

2. Calculate the fitness of population (t).  
3. Repeat 

i. Select a new solution(s) (population(t+1)) from popula-
tion(t) with preferring the fitter ones 

ii. Recombine solution(s) of population (t) to create a 
new population (t+1) 

iii. Perform Mutation of population (t+1)  
iv. Determine the fitness of population (t+1) 

4. Stop until the best solution is good enough for the deci-
sion maker. 

The rest of the paper is organized as follows. Section 2 pre-
sents the proposed interactive algorithm in detail. To show the 
effectiveness of this algorithm, four different numerical exam-
ples are illustrated in Section 3, followed by experimental re-
sults and analyses are shown in Section 4. Conclusion is also 
provided towards the end in Section 5.  

2 THE PROPOSED ALGORITHM 

The classical genetic and bacterial foraging optimization algo-
rithms may take a time to reach a favorable efficient solution 
exactly for the decision maker. Where, the GA has no guaran-
tee to find the favorable solution. But, it is possible to get an 
approximately favorable solution because GA is stochastic 
algorithm. Also, BFO algorithm may get struck in local opti-
ma. To resolve this problem, the harmony algorithm is inte-
grated to them. This modified version is more efficient and 
accuracy for optimization process than applying every one of 
these three algorithms. Also to achieve this purpose, a pro-
gramming in MATLAB code [8] has been developed in order 
to obtain good convergence and more accurate results of ap-
plications with save time. This algorithm is design to generate 
preferred solution. The decision maker determines a favorable 
efficient solution based on the distance of objective functions 
from the utopia point. 

2.1 The Steps of the Proposed Interactive Algorithm 

The basic steps of the proposed interactive algorithm can be 
summarized as follows: 

1- Starting with an initial solution based on preference of 
the decision maker; this initial solution can be selected 
from any one of the individual optimal solutions in GA 
or all them for BFO and HS. Selecting the values of algo-

rithm parameters. These values are taken after carrying 
out several trials on the example. 

2- Using penalty functions to handle constrained problems 
in order to force the search towards feasibility in the ge-
netic and harmony models.  

3- Constructing an interactive computer programming GA.  
4- Running program to obtain a new solution.  
5- Evaluating the obtained solution. If the new solution is 

acceptable, stop.  
6- Otherwise, constructing an interactive computer pro-

gramming BFO with the output of GA as initial solution. 
7- Update this initial solution with a suitable way for BFO 

to give a new solution. 
8- If the new solution is acceptable, stop. Otherwise, com-

bining HA procedure with BA to extract the preferred so-
lution directly based on the final solution of BA (after a 
suitable updating for HA). 

9- When initialize the optimization problem and algorithm 
parameters to minimize the objective functions, the speci-
fication of each decision variable is design as possible 
value range for each decision variable. The values of al-
gorithm parameters are selected on the basis of empirical 
suggestions.  

10- Calculating the objective functions value for the newly 
selected vector. If this value is better than the worst har-
mony vector in the harmony matrix, it is then included in 
the matrix, while the worst one is taken out of the matrix. 
The harmony memory matrix is then sorted in descend-
ing order by the objective function value.                         
Note that: In these models, no weighting coefficient is re-
quired. 

11-  Repeating Steps 9 and 10 until the pre-selected maxi-
mum number of iterations is reached. This number is se-
lected for large enough cycles to observe that there is not 
any further improvement in the resulted solution. 

12-  If a preferred solution is obtained, stop. Otherwise, up-
dating the HS algorithm by a new initial vector, which is 
selected from two resulted solutions, and continuing 
with step 9. This work focuses on the harmony search pa-
rameters with respect to the initial solution-setting-free 
technique.  

      By this way, hybridized genetic with bacterial foraging 
optimization and harmony search reduce the convergence 
time and enhance the accuracy. 

2.2 The Proposed Algorithm's Pseudo-code 

The pseudo-code as well as the flowchart (Fig. (2)) of the com-

plete algorithm is presented below: 

(1) Genetic Algorithm 

Step (1-1): Initialize population and parameters of GA: 

Define fitness function F(x) = ( f1(x) +  f2(x) + ... ... + fk(x) ) + 

penalty parameter × (sum of all the problem constraints), k  ≥ 

2 of objective functions, the decision varibles (x) = (x1, x2, …., 

xn)T, and n = the number of  the decision variables.  

Generate a new population of solutions (P):  

Start with initial solutions (x) = (x1, x2, …., xn)T based on deci-

sion maker's opinion (for example, it can determine by initial 
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range as [minimum value of the individual optimal vectors : 

maximum value of the individual optimal vectors]).  

Define parameters of GA:  

There are several parameters which characterize GA:  

Population size -- specifies how many individuals that are in 

each generation,  

Population type -- specifies the data type of the input (double-

vector, bit-string, and custom) to the fitness function,  

Creation function (CreationFcn) -- specifies the function that 

creates the initial population to find the minimum of a func-

tion using the GA such as uniform, Gaussian, or custom,  

Population initial range -- specifies the range of the vectors in 

the initial population that is generated by the creation func-

tion. The first row contains lower bounds for the entries of the 

vectors in the initial population, while the second row con-

tains upper bounds, 

Crossover function (CrossoverFcn), Crossover probability 

(pc), Crossover fraction (CrossoverFraction) in reproduction 

options -- specifies the fraction of the next generation,  

Mutation function (MutationFcn), Mutation probability (pm), 

and Stopping criteria options that contain the following:  

Generations number (Generations) -- Specifies the maximum 

number of iterations the genetic algorithm will perform. 

Time limit (TimeLimit) -- Specifies the maximum time in se-

conds the genetic algorithm runs before stopping.  

Fitness limit (FitnessLimit) -- The algorithm stops if the best 

fitness value is less than or equal to the value of fitness limit. 

Stall generations (StallGenLimit) -- The algorithm stops if 

there is no improvement in the best fitness value for the num-

ber of generations specified by Stall generations.  

Stall time (StallTimeLimit) -- The algorithm stops if there is 

no improvement in the best fitness value for an interval of 

time in seconds that specified by Stall time.  

Step 1-2. Find fitness of population: Evaluate the fitness func-

tion of each point for the population using the objective func-

tions and constraints of the problem. Also, apply the penalty 

function method for constrained problems. 

Repeat on this generation until a favorable efficient solution 

is met:       

Step 1-3. Parent selection: select the better solutions from the 

old population of solutions by selection function. 

Step 1-4. Perform the following genetic operators on selected 

parent: 

      1-4-1. Crossover operator: Apply crossover with probabil-

ity (pc) to parent for getting new solution.  

      1-4-2. Mutation operator: Apply mutation with probability 

(pm) of existing solution to create new solution. 

Step 1-5. Decode and fitness calculation:  

Select ga function- Genetic Algorithm in the solver field of 

MATLAB software. The fitness function is called from the GA 

to determine the fitness of each solution string generated dur-

ing the search. 

Step 1-6. Survivor selection:  

The survivor selection policy determines which individuals 

are to be kicked out and which are to be kept in the next gen-

eration.  

Step 1-7. Termination test:  

If the preferred solution is not obtained, return to step 1-2. 

Otherwise, stop and save this solution.  

This process in an iterative manner is called generation until 

the termination criteria (which setting by decision maker) is 

reached.  

 (2) Bacterial Foraging Optimization Algorithm 

Step 2-1 (a). Transport the local solution obtained from the GA 

to the BFO as an initial solution with a suitable value range in 

each decision variable by decision maker (DM). Or set new 

initial solution (with specification of each decision variable, 

and a possible value range in each decision variable) if GA 

closed to the preferred solution for the decision maker.  

Step 2-1 (b). Initialize parameters: 

Define fitness function F(x) = ( f1(x) +  f2(x) + ... ... + fk(x) ), k  ≥ 

2 of objective functions, the decision varibles (x) = (x1, x2, …., 

xn)T, and n = the number of  the decision variables. The initial 

range for every variable is determined by a range for each bac-

terium based on the number of bacterial in the population. For 

example, if the number of bacterial = 4 and the number of var-

iables = 2, then the initial solutions set as: 

x1= P1= (value11; value12; value13; value14)'; 

x2= P2= (value21; value22; value23; value24)'; 

Note that the penalty function method to deal with a con-

strained problem is not considered here. 

Define p, S, Nc , Ns , Nre , Ned , Ped ,C (i) (i = 1, 2, . . ., S), θi, 

Where:  

p: Dimension of the search space,  

S: The number of bacteria. It is a positive even integer,  

Nc: Number of chemotactic steps,  

Ns: Number of swim steps (or maximum number of steps),  

Nre: The number of bacteria reproductions (splits) per genera-

tion, 

Ned: The number of elimination and dispersal steps,  

Ped: The probability that each bacterium will be eliminated/ 

dispersed,  

C(i): The run-length unit (i.e., the chemotactic step size during 

each run or tumble). Here, the same run-length unit is used for 

all bacteria in the colony. 

J (i, j, k) = Fitness value or cost of i-th bacteria in the j-th chem-

otaxis and k-th reproduction steps. 

θ (i, j, k)= Position vector of i-th bacterium in j-th chemotactic 

step and k-th reproduction steps. 

Jbest (j, k) = Fitness of best position in the j-th chemotaxis and 

k-th reproduction steps. 

Jglobal= Fitness value or cost of the global best position in the 

entire search space. 

Step 2-2. Elimination-dispersal loop: l =l+ 1.  

Step 2-3. Reproduction loop: k = k+ 1.  

Step 2-4. Chemotaxis loop: j =j+ 1.  

     2-4-1. For i = 1, 2…, S, take a chemotactic step for bacterium   

                i as follows.  
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     2-4-2. Compute fitness function, J (i, j, k, l).  

     2-4-3. Let J last = J (i, j, k, l) to save this value since we may                  

               find better value via a run.  

     2-4-4. Tumble: generate a random vector Δ (i) ∈ Rp with   

               each element Δm(i), m = 1, 2, . . .,p, a random number  

               on [−1, 1].  

    2-4-5. Move: Compute θi(j+1, k, l).This results in a step of  

              size C (i) in the direction of the tumble for bacteria i.  

    2-4-6. Compute the fitness function J (i, j +1, k, l) with     

               θi(j+1, k, l).  

    2-4-7. Swim:  

        (i)  Let m =0 (counter for swim length)  

        (ii) While m < Ns (if not climbed down too long) do 

a) Let m = m+ 1  

b) If J (i, j +1, k, l) < J last, define J last =J (i, j +1, k, l),  

Then, another step of size C (i) in the same direction 

will be taken as: 

θi(j+1, k, l) = θi(j, k, l) + C (i)                   ,and use the 

new generated θi(j+1, k, l) to compute the new J(i, j+ 1, 

k, l).  

c) Else Let m= Ns. 

2-4-8. Go to next bacterium (i+1): if i ≠ S go to 2-4-2 to process 

the next bacterium.  

Step 2-5. If j < Nc, go to Step 2-4. In this case, continue chemo-

taxis since the life of the bacteria is not over.  

Step 2-6. Reproduction:  

For the given k and l, and for each i =1, 2, ... , S, let  

Ji health = be the health of the bacteria. Sort bacte-

rium in order of ascending values (J health).  

The Sr bacteria with the highest J health values die and the other 

Sr bacteria with the best values split, and the copies that are 

made are placed at the same location as their parent. 

Step 2-7. If k < Nre go to Step 2-2. In this case, the number of 

specified reproduction steps is not reached; start the next gen-

eration in the chemotactic loop.  

Step 2-8. Elimination-dispersal: for i =1, 2, ... ,S, with proba-

bility Ped, eliminate and disperse each bacterium, which results 

in keeping the number of bacteria in the population constant. 

To do this, if a bacterium is eliminated, simply disperse one to 

a random location on the optimization domain. If l < Ned, then 

go to Step 2-6, otherwise, end.  

(3) Harmony Search Algorithm 

Step 3-1 (a). Transport the local solution obtained from the GA 

or BFO to the HS as an initial solution with a suitable value 

range in each decision variable by decision maker (DM). Or 

set new initial solution (with specification of each decision 

variable, and a possible value range in each decision variable) 

if GA or BFO closed to the preferred solution for the decision 

maker. For example, if the number of the harmony memory 

size = 4 and the number of variables = 2, then the initial solu-

tions set as: 

[The values of the first variable; the values of the second vari-

able] = [(value11  value12  value13  value14); (value21  value22  

value23  value24)]. 

Step 3-1 (b). Set the parameters and initialize the HM: 

Define fitness function F(x) = ( f1(x) +  f2(x) + ... ... + fk(x) ) + 

penalty parameter × (sum of all the problem constraints), k ≥ 2 

of objective functions, the decision varibles (x) = (x1, x2, …., 

xn)T, and n = the number of  the decision variables. 

Where, the brief sub-pseudo-code of fitness function based on 

penalty function method for constrained problem has been 

provided below: 

Function sum =Fitness (x)     

Sum = cg (x)      

Sum = ( f1(x) +  f2(x) + ... ... + fk(x) ) + penalty (cg (x))   

end 

function constraints g(x) > 0 

Constraint (1), Constraint (2), Constraint (3), …. , Constraint (m)   

Sum = 0; 

for i=1: number of inequality constraints= m 

if (gx (i) < 0) 

Sum = Sum ± penalty's parameter ×  gx (i); 

end 

end 

End 

Define (HMS), (HMCR), (PAR min), (PAR max), (bw min), 

(bw max). 

Define the maximum number of iterations (NI). 

Step 3-2. Generate initial population (real number array 

(HM)): 

min = minimum visible value. 

max = maximum visible value. 

Step 3-3. Improvise a new harmony xnew as follows: 

while (Stop condition (current iteration ≤ NI)) do 

   for all decision variables (i = 1, 2, …, n) do 

     If (rand  (0, 1) < HMCR) then choose a value of one of the 

solutions from the harmony memory (HM) for i 

           If (rand  (0, 1) < PAR) then adjust the value of i by: 

             xnew (i) = xold (i) ± rand  (0, 1) × bw 

       end if 

             else (with probability 1- HMCR) use a random value 

for this decision variable 

end if 

  end for 

Step 3-4. Update the HM (minimization objectives): 

   If the new solution is better than the worst solution in the 

harmony memory then accept the new harmony and replace 

the worst solution with it. 

  end if 

end while. 

Step 3-5. Find the current best solutions: 

If termination criterion is reached, return the best solution in 

the harmony memory; otherwise update the initial population 

and go to Step 3-3. 

End.   

Note that: 

1- The acceptable solution may be infeasible but have 

less distance. 

2- After each generation of GA, BFO, and HS, a typical 

      ∆(i) 
√∆

T
(i) ∆(i)  
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and popular Euclidean distance is employed to measure 

the distance between the utopia vector and a resulted so-

lution vector. Euclidean distance is defined as the 

straight-line distance between two points. For N-

dimensional space, the Euclidean distance between these 

two points’ Ui and Ai is given by:  

     ED=                                                                (1) 

Where, Ui (or Ai) is the coordinate of U (or A) in dimension i 

[9]. The selected solution has the minimum Euclidean dis-

tance. 
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3 COMPARATIVE STUDY  

In this section, some different multi-objectives examples are 

used to test the proposed algorithm’s performance.  

The code of these examples has been written with MATLAB 

7.0. The key factor in these applications is how the range of 

initial point is selected according to the problem with control-

ling algorithm’s parameters. Also here, the preferred solution 

is selected from these algorithms according to their non-

dominance based on its distance from the utopia point. 

Example (3.1):  

In this example, we want to minimize two objectives, each 

having one decision variable [4]. 

Min:  (f1 = (x+ 2)2 – 10,   f2 = (x- 2)2 + 20), 

Subject to:   -1.5 ≤ x ≤ 0. 

The following graph plots two objective functions on the same 

axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two objectives have their minima at x*= -2 and x*= 

+2 respectively. However, in a multiobjective problem, x= -2,  

x= 2, and any solution in the range -2 ≤ x ≤ 2 is Pareto- opti-

mal. It is noted in [4] that there is no single solution to this 

multiobjective problem. But, the goal of the proposed algo-

rithm is to find preferred solution in that range (ideally with a 

good spread).  

The Genetic Algorithm solver assumes the fitness function 

will take one input x. The following fitness function computes 

the value of each objective function and returns these values in 

a single vector output. 

Fitness Function = 

                       @ (x) ((x(1)+ 2)^2- 10+ (x(1)- 2)^2+20).              (2) 

The parameter settings for GA are as follows: 

Population size: 20.0,            Fitness limit: 10.0,      

Crossover fraction: 0.7,         Mutation function:  uniform, 

Stall generation limit and stall time limit are infinity, 

The first population initial range is [-2: 2]. 

 

Fig. 3: Plot of objectives for example (3.1). 

 

Fig. (2): Flowchart of the proposed solution 

algorithm. 
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  By direct search toolbox of MATLAB code 7.0, you can use 

GAOPTIMSET for default GA options structure. The above 

figure shows the converging process of the fitness values over 

100 steps. The results of the first generation are: 

x = -0.0561, the first objective is -6.221, the second objective 

is 24.2275, and their distance from the utopia point is 5.6702. 

      By followed population initial ranges ( [-0.0037: 2.00],         

[-0.0027:0.0123], [-4.3982e-004: 2.4134e-004], [-9.8796e-007: 

7.2198e-006], [-7.9727e-008: 9.0011e-009], [-2.1705e-010: 

3.9561e-010], [-7.1521e-011: 8.7339e-012] ), the solution of GA 

at last generation is as follows: 

x = 2.6221e-012, the first objective is -6.0, the second objec-

tive is 24.0, the best fitness (that means the optimal solution of 

the problem at equal weights) as seen in the following figure is 

18.0 and their distance from the utopia point is 5.6569. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This solution of GA has the global minimum at the origin or 

very near to the origin. As can be seen from following figure, 

there is good convergence of the Pareto front. Preferred solu-

tion is obtained on the minimum convergence of the Pareto 

front. 

 

 

 

 

 

 

 

The second sub algorithm to minimize these objectives with 
satisfying their constraints is bacterial forging optimization. It 
studies the behavior of bacteria in a given search space. BFA is 
coded as M-file in MATLAB platform.  
Step 1-a: Bacteria Representation and initialize parameters:  
Each bacterium's position represents one possible solution required 

for the problem. The number of dimensions of search space is p. In 

each dimension of search space, bacteria position is [0.0; 1.0]' for 

next generation. In the each iteration of chemotaxis step, each bacte-

rium tumbles to the new random position. Position of ith bac-

terium in jth chemotaxis and kth reproduction step is defined 

as: 

x= P(1,: ,j+1,K, l);                                                                            (3) 

For initialization, we must choose  p, S , Nc , Ns , Nre , Ned , 

Ped , and the C(i), i=1,2…… S. Calculations are restricted with-

in specified search ranges with the different parameters as 

given in table 1. There two cases of the initial search ranges. 

Case (1) is based on the output of GA, but case (2) is based on 

free selected initial point. The other parameters used for BFO-

based trial and error selection are shown in table 1. 

Step 1-b: Define and evaluate the fitness function of the al-

gorithm: 

In each generation, each bacterium is evaluated, and a value of 

goodness or fitness is returned by a fitness function. This evolu-

tion is driven by the fitness function. 

The fitness function =  

((x(S)+ 2)^2 -10 + (x(S)- 2)^2 + 20).                                           (4) 

Step 2: Execute the bacterium chemotaxis cycle. 

Step 3: Run the bacterial dispersal cycle. 

Step 4: Evaluate and select the best solution:  

After each generation of BFO, the Euclidean distance is em-

ployed to measure the distance between the utopia vector and 

the resulted solution vector.    

Obviously when the bacterium has smaller C(i) = 0.00001, it is 

closed to its start point and not able to escape from it. But, the 
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Fig. 4: The first generation of GA for                   

example (3.1). 
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Fig. 5: The last generation of GA for example (3.1).  

 

 

 

    Fig. 6: Experimental results for example (3.1).  
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bacterium with larger C(i) = 0.1 can explore the whole search 

space and escape from these local solutions to enter the do-

main with the efficient solutions. 

Some or all parameters may be change during the evolution to 

produce significant improvement in performance results of 

the algorithm. 

With these values of controller BFO parameters that are cho-

sen after a considerable number of trials and error, the output 

of BFO is x = 0, then the first objective is -6.0, the second objec-

tive is 24.0, and their distance from the utopia point is 5.6569. 

Then, the BFO gives better benefits when compared to GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     In next phase, the harmony search algorithm is reinitialized 

at point (-7.1521e-011, 0.0, 1.0, 2.0) with 1000 run-length unit 

(NI) and HMS= 4. The sub-pseudo-code of the complete algo-

rithm is presented below: 

Start 

Objective function, f(x) =  

(f1 + f2) = ((x+ 2)2 – 10 +  (x- 2)2 + 20)                                      (5) 

Generate initial harmonics, [-7.1521e-011   0.0   1.0   2.0] 

Define pitch adjusting rate, (PAR min= 0.04, PAR max= 0.09,     

bw min= 0.01, and bw max= 0.07) 

Define harmony memory accepting rate (HMCR= 0.07) 

While run-length < Max number of iterations (1000)  

Generate new harmonics by accepting best harmonics  

Adjust pitch to get new harmonics (solutions) 

if (rand > HMCR= 0.07),  

choose an existing harmonic randomly 

else if (rand > pitch adjusting rate), adjust the pitch randomly 

within limits 

else generate new harmonics via randomization 

end if 

Accept the new harmonics (solutions) if better 

end while 

Find the current best solutions 

end 

Finally for few times of run, the current best solution of HS is 

similar to BFO with less time search. This example has a uni-

modal variable, and only one minimum. 

Example (3.2): 

In this example, we consider two objectives, and two variables 

minimization optimization problem [2] as shown below to 

better illustrate the working of the GA, BFO, and HS.  

Min:  (f1 = x1,   f2 = (1+x2) / x1), 

Subject to:   0.1 ≤  x1 ≤ 1,  

                                       0 ≤  x2 ≤ 5.  

Where, f1
*= 0.1 with (x1

*= 0.1, x2
*= 0), and f2

*= 1.0 with (x1
*=1.0, 

x2
*= 0). 

Now we show the step by step procedure of the proposed al-

gorithm. 

A typical genetic algorithm procedure takes the following 

steps:  

A population of candidate solutions is initialized as follows:  

Population initial range = ([0.1; 1.0], [0.1; 0.7912], [0.1; 0.7754], 

[0.1; 0.7663], [0.1; 0.7602], [0.1; 0.7430], [0.1; 0.7403], [0.1; 

0.1026], [0.0; 0.1000], [0.0; 0.0015]); Population size = 20, 10, 6; 

Crossover fraction = 0.8, 0.5, 0.01, 0.001; Mutation function = 

Uniform; Fitness limit = 2; Stall generation limit = Stall time 

limit = infinity and Penalty parameter = 0.1. New solutions are 

created by applying genetic operators (mutation and/or 

crossover).  

The fitness (@ (x) (x(1)+ ((x(2)+ 1)/ x(1)) + (Penalty parameter 

0.10)*(x(1) + 0.1+ x(1) -1.0 + x(2) - 5))) of the resulting solutions 

are evaluated and suitable selection strategy is then applied to 

determine which solutions will be maintained into the next 

generation. The procedure is then iterated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     In this example, the penalty function is used to transform 

this constrained problem to unconstrained problem. The two 

following various graphs show GA process according to fit-

ness evolution.  

The first solution of GA is as follows: 

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 1.7776 Mean: 3.0099

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

 

  Fig. 7: The first generation of GA for example (3.2).  
  

 

Table 1. Control parameters of the BFA used 

in example  (3.1) 

Data 
Range/ Value 

Case (1) 

Range/ Value 

Case (2) 

The initial 

solution 
[-7.1521e-011; 0.0; 1.0; 2.0] [0.0; 1.0] 

S 4 2 

Nc 1 1 

Ns 1 1 

Nre 1 1 

Ned 2 2 

Ped 0.1, 0.2 0.001, 0.1 

The run-

length 

C(i) 

0.00001*ones(S,1) 0.0001*ones(S,1), 

0.00001*ones(S,1) 
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 x1 = 0.9551, x2 = 0.1521, f1 =0.9551, f2 = 1.2062, total of two ob-

jectives = 2.1614, the distance from the utopia point =  0.8796. 

But, the last solution of GA is as follows: x1 = 0.7403, x2 = 

1.6554E-07, f1 = 0.7403, f2 = 1.3508, total of two objectives= 

2.0911, the distance from the utopia point =  0.7301. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Following, the BFO process with the path of four bacteria 

that start at (0.1; 0.4; 0.7; 1.0), and (0.0; 0.00000016554; 0.1; 1.0) 

with different C(i). The parameter setting for BFO is S = 4, 2; 

Nc = 2, 3, 1; Ns = 1, 3, 2; Nre =1, 3; Ned = 1, 3, 2; Ped = 0.01, 

0.1, 0.12; C(i) = 0. 001*ones (S,1), 0.01*ones (S,1) and 0.1*ones 

(S,1). Fig. 8, and Fig. 9 illustrate the foraging process of the 

function values found by these bacteria. 

The first solution of BFO is as follows: 

x1= 1.0004, x2= 0.0004, f1 = 1.0004, f2 = 1.0, total OFs = 2.0004, C1 

= 1.0004, C2 =   4.0987e-004, and distance = 3.9276e-004. 

After some generations with the initial solutions (0.7409; 

0.7374) and (0.0000; 0.0000), the last solution of BFO is as fol-

lows: x1= 0.7403, x2= 0.0000, f1 = 0.7403, f2 = 1.3508, total OFs = 

2.0911, distance = 0.7301. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 From the illustrated graphical and above results, the GA-BFO 

algorithm outperformed over genetic algorithm in terms of 

solution accuracy and convergence speed to get a favorable 

solution.     

The following sub-algorithm (HS) starts with [0.1 0.4 0.7 1.0; 

0.0 0.00000016554 0.1 1.0]; which is followed by [0.1 0.4 0.7 1.0; 

0.0 0.0 0.0 0.0], [0.2140 0.4 0.7 1.0; 0.0 0.0 0.0 0.0], [0.7 0.7466; 0.0 

0.0], [0.7397 0.7420; 0.0 0.0], [0.7397 0.7410; 0.0 0.0], [0.7401 

0.7407; 0.0 0.0], and [0.7401 0.7404; 0.0 0.0] in several iterations, 

respectively. The other parameters are setting as: NI= (7000, 

1000), HMS= (4, 3, 2), HMCR= (0.07, 0.7, 0.02), PAR min= 

(0.04, 0.4, 0.07), PAR max = (0.09, 0.9), bw min = (0.01, 0.1, 

0.05), bw max= (0.07, 0.7, 0.06), and Penalty parameter =          

(-0.0001). The resulted solution as graphing in the following 

figure is x1= 0.7403, x2= 0.0000, f1 = 0.7403, f2 = 1.3508, total 

OFs = 2.0911, distance = 0.7301. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clearly seen from the above figure, even though there is 

good convergence and quite good diversity, there is the pre-

ferred solution that has minimum distance to the utopia point 
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Fig. 8: The generation of GA when x1= 0.7403 and  

x2= 0.2398 for example (3.2). 
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Fig. 9: The first solutions of BFO for example (3.2). 
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Fig. 10: The last solutions of BFO for example (3.2). 

 

 

       Fig. 11: Experimental results for example (3.2). 
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and it outsides the resulted Pareto front from [2]. The pro-

posed BF–HS algorithm converges to the preferred solution 

much faster than the GA approach. 

Example (3.3): 

The example shows multi-objective convex non-linear pro-

gramming problem. This problem was solved by an extended 

method of TOPSIS for the convex non-linear multi-objective 

problems in [7]. 

Max: (f1 = x1
2 + x2

2 + x3
2,   f2 = (x1 - 1)2 + x2

2+ (x3 - 2)2), 

Min:  (f3 = 2x1 + x2
2+ x3) 

Subject to:   -x1 + 3x2 - 4x3 + 6 ≥ 0, 

                     -2x1
2 - 3x2 - x3 + 10 ≥ 0, 

                      x1, x2,  x3    R3,  0 ≤  x1 ≤ 3, 0 ≤  x2 ≤ 4, 0 ≤  x3 ≤ 2. 

Where, the individuals optimal are as follows:  

f1
*= -11.1111 with (x1

* = 0, x2
* = 2.66667, x3*= 2.0), f2

*= -16.1111 

with (x1
* = 0, x2

* = 3.3333, x3
* = 0) and f3

*=0 with x1
* = x2

* = x3
*    

= 0. 

The solution by the proposed algorithm: 

To solve such problem, it makes sense to begin by genetic al-

gorithm. It selects at first some values for its parameters as 

seen in the following table.  

The first obtained solution from GA is as follows: 

x1 = 2.5080,  x2 = 3.1743, x3 = 2.9268. Thus, f1 = -24.932, f2 =         

-13.209, f3 = 18.019, total OFs = -20.122, and the distance = 

22.894. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After some iterations, the last solution of GA is as follows: 

x1 = 0.0985, x2 = 2.8460, x3 = 0.1764. Then, f1 = -8.140, f2 =           

-12.238, f3 = 8.473, total OFs = -11.905, C1 = -7.7338, C2 = 8.734, 

distance = 9.7785. Fig. 12 shows the fitness function for last 

generation of this example following an increase in Fig. 11 by 

4.7962 but a decrease in the initial point from [0.0: 3.3333] to 

[0.0: 3.2069] with some changing in the described parameter 

values. Also, the distance decreased from 22.894 to 9.7785. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The second sub algorithm (Bacterial) starts with re-

initialization of the outputs of GA as shown in the following 

table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

The first solution of BFO is as follows: 

Table 2. Parameters of genetic algorithm 
for example (3.3) 

Parameters Range/ Value/ Function 

Population initial range 
[0.0; 3.3333], [0.0; 3.2880], 
[0.0; 3.2412],  [0.0; 3.2069] 

Population size 10, 6, 18 

Crossover fraction 0.5, 0.4, 0.6, 0.9 

Mutation function Uniform 

Fitness limit -31.5 

Stall generation limit Infinity 

Stall time limit Infinity 

Penalty parameter 0.1 
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Fig. 12: The first generation of GA for example (3.3). 

  

 

10 20 30 40 50 60 70 80 90 100
-14

-12

-10

-8

-6

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: -13.9931 Mean: -13.9931

0 10 20 30 40 50 60 70 80 90 100

Stall (T)

Stall (G)

Time

Generation

% of criteria met

Stopping Criteria

Fig. 13: The last generation of GA for example (3.3).  

 

 

Table 3. Controller parameters of the BFA 
used in example  (3.3) 

Data Range/ Value 

The initial solu-
tion 

At first generation: 
p1= [0.0000; 0.0000; 0.0000; 2.8916; 3.0000; 3.2992; 

3.8005; 3.8392] 
p2= [0.0000; 2.6667; 3.3333; 3.3472; 3.3531; 3.3668; 

3.6676; 4.0000] 
p3= [0.0000; 0.0000; 0.0311; 2.0000; 3.2000; 3.2163; 

3.2527; 3.7663] 
At second generation: 
p1= [0.0000; 0.0000; 0.0000; 0.0000] 
p2= [3.3333; 2.6668; 2.6667; 0.0000] 
p3= [0.0311; 0.0002; 0.0000; 0.0000] 
. 
. 
At last generation: 
p1= [0.0000; 0.0000] 
p2= [2.7223; 2.7218] 
p3= [0.0000; 0.0000] 

S 8, 4, 2 

Nc 1, 2 

Ns 2, 1 

Nre 1, 2 

Ned 4, 1 

Ped 0.001, 0.01, 0.1 

The run length 0.0001*ones(s,1), 0.01*ones(s,1), 0.001*ones(s,1) 
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x1= 0.0003, x2= 2.6668, x3= 0.0002, f1 = -7.112, f2 = -12.110, f3 = 

7.112, total OFs = -12.110, C1 = 13.9993, C2 = 1.9994, C3 = 

2.8176e-004, C4 = 2.6668, C5 = 2.1643e-004, and distance = 

9.088. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After several generations the final results are:  

x1= 0.0, x2= 2.7220, x3= 0, f1 = -7.4093, f2 = -12.4093, f3 = 7.4093, 

total OFs = -12.4093, C1 = 14.1660, C2 = 1.8340, and distance = 

9.0721. 

Again, the BFO is successful in solving the problem. The ob-

tained results show that the distance from the utopia point is 

considerably reduced over the GA. The following figure illus-

trates the final best positions of the bacteria. In summary, 

good performance (lower distance from the utopia point and 

acceptable settling time) is obtained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To continue with harmony algorithm, at first, the initial values 

of its parameters are setting as seen in the Table 4. 

The first solutions of HS (at best value and worst value in 

the iteration) are: 

x1= 0, x2= 2.6664, x3=  0, f1 = -7.1097, f2 = -12.1097, f3 = 7.1097, 

total of objectives = -12.1097, C1 = 13.9992, C2 = 2.0008, and 

distance = 9.0868. 

Table 4. Parameters of the HSA for example (3.3) 

Data Range/ Value  

Initial 
solution 

At first iteration:  

[0.0000 0.0000 0.0000 2.8916 3.0000 3.2992 

3.8005 3.8392; 0.0000 2.6667 3.3333 3.3472 

3.3531 3.3668 3.6676 4.0000; 0.0000 0.0000 

0.0311 2.0000 3.2000 3.2163 3.2527 3.7663] 

At second iteration: 

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000; 2.6667 3.3333 3.3472 3.3531 3.3668 

3.6676 4.0000; 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000] 

. 

. 

At last iteration: 

 [0.0000 0.0000 0.0000 0.0000 0.0000; 2.7217 

2.7224 2.7474 3.3332 3.3333; 0.0000 0.0000 

0.0000 0.0000 0.0000] 

NI 7000 

HMS 4, 2 

HMCR 0.2, 0.7 

PAR min 0.7, 0.4  

PAR max  0.9  

bw min  0.5, 0.1 

bw max  0.6, 0.7 

Penalty 
parameter 

-0.0001 

 
The last values at best and worst generation of HS are: 

x1= 0, x2= 2.7220, x3=  0, f1 = -7.4093, f2 = -12.4093, f3 = 7.4093, 

total of objectives = -12.4093, C1 = 14.166, C2 = 1.834, C3 = 0, C4 

= 2.7220, C5 = 0, and distance = 9.0721. 

It is easy to see that these results from both BFO and HS are 

equivalent but with less computational time is achieved by 

HS. 

   On other hand, one of the Pareto-optimal solutions in [7] is x 
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Fig. 14: The first solutions of BFO generations for 
example (3.3). 
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Fig. 15: The last solutions of BFO for example (3.3).  
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= (0.00, 0.05, 0.99) that has distance from the utopia point = 

17.3796. So, the above results indicate that the hybrid algo-

rithms are superior to the others. They consume considerably 

short search time.  

Example (3.4): 

The following benchmark problem was used in the paper [10]. 

This problem was relatively difficult becauce the constraints 

divided the Pareto frontier into five regions which created 

difficulties for optimization algorithms to find all parts of the 

Pareto frontier as shown in the figure (18). It consists of two 

nonlinear objectives and six constraints. 

Min:  f1 = - (25(x1- 2)2 + (x2- 2)2 + (x3- 1)2 + (x4- 4)2 + (x5- 1)2 ), 

Min:  f2 = ( x1
2 + x2

2  + x3
2  + x4

2  +  x5
2  + x6

2 ), 

Subject to:   x1+ x2 - 2 ≥ 0, 

                    - x1- x2 + 6 ≥ 0, 

                     x1- x2 + 2 ≥ 0, 

                     -x1+ 3x2 + 2 ≥ 0, 

                     - (x3- 3)2 - x4 + 4 ≥ 0, 

                     (x5- 3)2 + x6  - 4 ≥ 0, 

                      x1, x2,  x6   [0;10],  x4  [0;6],  x3, x5  [1;5]. 

The first process of the proposed algorithm (Genetic search):  

This section starts with showing the parametric set up of the 

algorithmic parameters. These parameters are given below.  

Population initial range: [0.0: 5.0], Population size: 12, Crosso-

ver fraction: 0.5, Mutation function: Uniform, Fitness limit: -

148.0, Stall generation limit: Infinity, Stall time limit: Infinity, 

and Penalty parameter: 0.01. 

After one generation, the obtained solutions are as follows: x1 

= 4.5843, x2 = 1.6521, x3 = 0.3979, x4 = 2.9167, x5 = 0.5045, x6 = 

0.0207, f1 = -168.8678, f2 = 32.6657, total of objectives =                

-136.2021, C1 =4.2364,   C2 = -0.2364, C3 =4.9322, C4 =2.3720,    

C5 = -5.6876, C6 = 2.2482, and the distance from utopia point 

=35.4568. This process of GA is below graphed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    But after several iterations, the last solutions are:                   

x1 = 4.4095, x2 = 1.0231, x3 = 0.7322, x4 = 1.6200, x5 = 0.2534, 

x6 = 0.6058, f1 = -152.3901, f2 = 24.0821, total of objectives =              

-128.3080, C1 = 3.4326,     C2 = 0.5674, C3 = 5.3864, C4 = 0.6598, 

C5 = -2. 6729, C6 = 4.1496 and distance = 20.5564. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The second process of the proposed algorithm (Bacterial 

foraging): 

To create the first generation, BFA sets some values for its con-

troller parameters as shown in the following table. 

Table 5. Controller parameters of the BFA used 

in example  (3.4) 

Data Range/ Value 

The 

 initial 

solution 

At first generation: 
p1= [0.0000; 1.0000; 4.2764; 4.3157; 4.3762; 

4.3945; 4.4095; 4.4197; 4.4339; 4.4394; 
4.4436; 4.4556; 4.4940; 4.5843] 

p2= [0.3154; 0.4392; 0.7484; 0.7584; 0.7631; 
0.9234; 1.0000; 1.0231; 1.1211; 1.2841; 
1.4701; 1.6521; 1.6763; 2.0000] 

p3= [0.1895; 0.2811; 0.2880; 0.3979; 0.6405; 
0.7322; 1.0000; 1.0246; 1.0957; 1.1875; 
1.2018; 1.7322; 2.0836; 5.0000] 

p4= [0.0000; 0.0000; 1.0090; 1.2875; 1.6200; 
1.6993; 2.0557; 2.1389; 2.1951; 2.3347; 
2.6410; 2.6511; 2.7221; 2.9167] 

p5= [0.2534; 0.3572; 0.4655; 0.4983; 0.5045; 
0.5396; 0.5638; 0.6520; 0.7395; 0.8358; 
1.0000; 1.2796; 1.9686; 5.0000] 

p6= [0.0000; 0.0000; 0.0033; 0.0098; 0.0207; 
0.0977; 0.1564; 0.2762; 0.6058; 0.7952; 
0.8240; 1.3017; 0.3194; 1.3471] 

 
At second generation: 

p1= [4.4095; 4.3947; 4.3945; 4.3762; 4.3157; 
4.2764] 
p2= [1.0000; 0.9235; 0.9234; 0.7631; 0.7584; 
0.7484] 
p3= [1.2018; 1.1875; 1.0957; 1.0246; 1.0000; 
0.7322] 
p4= [1.6994; 1.6200; 1.2875; 1.0090; 0.0000; 

 

  

Fig. 16: The first generation of GA for example (3.4).  
  

 

 

 

Fig. 17: The last generation of GA for example (3.4).  
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0.0000] 
p5= [5.0000; 1.9686; 1.2796; 1.0000; 0.8358; 
0.5397] 
p6= [0.0978; 0.0207; 0.0098; 0.0033; 0.0000; 
0.0000] 
. 
. 
. 
At last generation: 

p1= [4.2777; 4.2777; 4.2777; 4.2777] 

p2= [1.0000; 1.0000; 1.0000; 1.0000] 

p3= [1.0000; 1.0000; 1.0000; 1.0000] 

p4= [0.0000; 0.0000; 0.0000; 0.0000] 

p5= [1.0003; 1.0000; 0.9998; 0.9994] 

p6= [0.0000; 0.0000; 0.0000; 0.0000] 

S 14, 6, 4 

Nc 1, 2 

Ns 2, 1 

Nre 1 

Ned 3, 1 

Ped 0.01 

The run 

length 

0.0001*ones(S,1), 0.001*ones(S,1), 

0.01*ones(S,1),  0.1*ones(S,1), 0.12*ones(S,1), 

0.02*ones(S,1)  

After several generations of BFO, the two sub-algorithms 
converge to the best result, which hopefully represents the 
favorable efficient solution of the problem to decision maker. 
The solutions that obtained by BFA are presented in the fol-
lowing table. 

Table 6. The first and last solution of BFO for example 

(3.4) 

Data The first solution The last solution 

x1 4.3947 4.2777 

x2 0.9235 1.0000 

x3 0.7322 1.0000 

x4 1.6994 0.0000 

x5 0.5397 1.0000 

x6 0.0978 0.0000 

f1 -150.0999 -146.6979 

f2 28.8912 21.2987 

Total 

objectives 
-126.2087 -125.3992 

C1 3.3182 3.2777 

C2 0.6818 0.7223 

C3 5.4712 5.2777 

C4 0.3758 0.7223 

C5 -2.8423 0.0000 

C6 2.1509 0.0000 

Distance 20.0017 17.34765 

 

After that, the harmony search works with the outputs of GA 

and all individual objective fi
*; as initial solutions; to verify the 

GA-BFOA performance. Where, f1
*= -148.0 with (x1

*= 0.0, x2
*= 

2.0, x3
*= 5.0, x4

*= 0.0, x5
*= 5.0, x6

*= 8.0), and f2
*= 4.0 with (x1

*= 

1.0, x2
*= 1.0, x3

*= 1.0, x4
*= 0.0, x5

*= 1.0, x6
*= 0.0). 

Table 7. Parameters of the HSA for example (3.4) 

Data                        Range/ Value 

   Initial  
  solution 

At first iteration:  
[0.0000 1.0000 4.2764 4.3157 4.3762 4.3945 

4.4095 4.4197 4.4339 4.4394 4.4436 4.4556 
4.4940 4.5843; 

0.3154 0.4392 0.7484 0.7584 0.7631 0.9234 
1.0000 1.0231 1.1211 1.2841 1.4701 1.6521 
1.6763 2.0000; 0.1895 0.2811 0.2880 0.3979 
0.6405 0.7322 1.0000 1.0246 1.0957 1.1875 
1.2018 1.7322 2.0836 5.0000; 

0.0000 0.0000 1.0090 1.2875 1.6200 1.6993 
2.0557 2.1389 2.1951 2.3347 2.6410 2.6511 
2.7221 2.9167; 0.2534 0.3572 0.4655 0.4983 
0.5045 0.5396 0.5638 0.6520 0.7395 0.8358 
1.0000 1.2796 1.9686 5.0000; 0.0000 0.0000 
0.0033 0.0098 0.0207 0.0977 0.1564 0.2762 
0.6058 0.7952 0.8240 1.3017 0.3194 1.3471] 

At second iteration: 
[4.2764 4.3157 4.3762 4.3945 4.4095 4.4197 

4.4339 4.4394 4.4436 4.4556 4.4940 4.5843; 
0.7484 0.7584 0.7631 0.9234 1.0000 1.0231 
1.1211 1.2841 1.4701 1.6521 1.6763 2.0000; 
0.2880 0.3979 0.6405 0.7322 1.0000 1.0246 
1.0957 1.1875 1.2018 1.7322 2.0836 5.0000; 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;     
0.4655 0.4983 0.5045 0.5396 0.5638 0.6520 
0.7395 0.8358 1.0000 1.2796 1.9686 5.0000; 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000] 

. 

. 
At last iteration: 
[4.2777 4.2777; 1.0000 1.0000; 1.0000 1.0000;       

0.0000 0.0000; 0.9997 1.0000; 0.0000 0.0000] 

  NI                           1000, 2000 

HMS 7, 5, 4 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 9, Issue 12, Decmber-2018                                                                                                    1965  
ISSN 2229-5518 

 

IJSER © 2018 

http://www.ijser.org  

HMCR 0.9, 0.09, 0.7, 0.07 

PAR                      
min 

0.4, 0.04 

 PAR 
 max 

0.9, 0.09 

bw min 0.1, 0.01 

bw max 0.7, 0.07 

Penalty 
parameter 

-0.0001 

 

The first solution of HS with two ranges of iterations:  

At best value in the iteration: 

x1=0.0002,   x2= 0.3156,  x3= 0.1897, x4= 0.0000,  x5= 0.2534,  x6= 

0.0000, f1 = -120.0312, f2 = 0.1998, total objectives = -119.8314, 

C1 = -1.6842,  C2 = 5.6842, C3 = 1.6846, C4 = 2.9466, C5 = -3.8978, 

C6 = 3.5438, distance from utopia point = 28.2257. 

At worst value in the iteration: 

x1= 0.0006, x2= 0.3163, x3= 0.1903, x4= 0.0000, x5= 0.2544, x6= 

0.0000, f1 = -119.9864, f2 =0.2010,  total of objectives = -119.7854,  

C1 = -1.6831, C2 = 5.6831, C3 = 1.6843, C4 = 2.9483, C5 = -3.8944, 

C6 = 3.5383, distance = 28.2700. 

The final solution: 

At best value in the iteration:   

x1= x2= x3 = x4= x5= x6= 0.0000, f1 = -122.0000, f2 = 0.0000, C1 =             

-2.0000, C2 = 6.0000, C3 = 2.0000, C4 =  2.0000, C5 = -5.0000, C6 = 

5.0000, distance = 26.3059. 

At worst value in the iteration: 

x1= 4.2777, x2= 1.0000, x3= 1.0000, x4= 0.0000, x5= 1.0000, x6= 

0.0000, f1 = -146.6979, f2 = 21.2987, total of objectives =                

-125.3992, C1 = 3.2777, C2 = 0.7223, C3 = 5.2777, C4 = 0.7223, C5 

= 0.0000, C6 = 0.0000, distance = 17.34765. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

   As is illustrated in the above results and figure, the proposed 

algorithm has faster convergence compared with similar algo-

rithms. Also, the sub-algorithm BFO and harmony search pro-

duce perfect results than other sub-algorithm (GA) for all 

types of such variant problems. 

4   EXPERIMENTAL RESULTS and ANALYSES   

    This paper presents a new approach by hybridizing genetic 

algorithm with bacterial foraging optimization and harmony 

search. The different comparative examples are examined to 

show the effectiveness of the proposed algorithm. The follow-

ing performance measures are used for this comparative 

study: (a) quality of the final solution based on achieving min-

imum distance from the utopia point, (b) speed of conver-

gence towards the favorite efficient solution, and (c) scalability 

of the algorithms against the growth of dimensions for differ-

ent problems. 

     The experiments were carried out to compare three intelli-

gent algorithms that are included in the proposed algorithm 

on four test problems with dimensions of one, two, three and 

six. The major findings of this study are as follows: 

 Despite the genetic optimization technique requires a very 

long run time that may be several hours or more several 

hours, it gave good results (as in the first and second exam-

ples) depending on the size of the system under study. 

 BFO algorithm has been successfully applied in several do-

mains of the most complex problems over the GA. 

 Although the dimensions of test problems are increased, 

BFO and HS exhibit good search capabilities and conver-

gence faster than GA algorithm on most of the test problems. 

 The experimental results suggest that the results from HS are 

better than results from other models. The performance of 

BFO is satisfactory for all the problems. Where, the perfor-

mance of BFA is nearby same as HS. 

 Also, this comparative study shows the superiority of the 

proposed algorithm over other algorithms commonly used 

in the literature of the multi-objective optimization prob-

lems.  

 The harmony algorithm works very well in different such 

problems. Where, it yielded more accurate final results con-

suming lesser amount of computational time in all the test 

cases. So, this is a promising technique that can be used in 

complex problems. 

 The novel approach will be useful to solve many different of 

multi-objective applications. 

5 CONCLUSION 

       The results from the proposed algorithm are shown to be 

robust and extendable, suggesting the potential of applying 

the BFO and HS for harder higher-dimensional and dynamic 

optimization problems in different applications. 

       HS has many features that make it as a preferable tech-

nique and also to be combined with other meta-heuristic algo-

rithms. 

 

 

Utopia point 

  

  
Preferred 

solution 

f2 

f1 
 

Fig. 18: The Pareto-optimal and Preferred solution of 
example (3.4). 
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